

1

The R language – a short companion
This companion is essentially based on the documents „An Introduction to R“ and „R language definition“, both version 1.7.1,

available on the R website http://www.r-project.org/. Graphical and statistical functionalities are not considered.
Version 1.2. Marc Vandemeulebroecke, July 14th, 2003

Objects in R
• are referred to through symbols (see below)
• have type, mode, storage mode:

 types: NULL, symbol, pairlist, closure, environment, promise, language, special,
builtin, logical (e.g. NA1), integer, double (e.g. NaN2 or Inf), complex, character,
‚...‘, any, expression, list, externalptr and weakref
 modes: basic nature of the object’s fundamental constituents: numeric, complex,

logical, character, list, function, call, expression, name, etc
 storage modes: logical, integer, double, complex, character, symbol etc

• most important objects (these are referred to through variables):
 vectors, arrays, matrices: Vectors are an atomic structure,and may be of the types

logical, integer, double, complex and character, with certain associated modes and
storage modes3. Scalars are treated as vectors of length 1. Arrays are vectors plus
the dim attribute (dimension vector), matrices are arrays with a dim attribute of
length 2. Arrays are ordered column major order. See also „Indexing“ below.
 factors: handle nominal and ordered categorical data. Have a levels (and optionally

a contrasts) attribute and class factor (note the effect of unclass()!). Implemented as
an integer vector and a mapped vector of names for the levels. typeof() returns
integer, mode() returns numeric. The combination vector + labelling factor is an
example of a ragged array.
 lists: recursive structure. „Generic vectors“, of type and mode list; their components

(top-level elements) can be of any type or mode. See also „Indexing“ below.
 data frames: matrix-like structures with columns of possibly different

type/mode/attributes; comparable in form and function to SAS datasets. More
precisely: lists of class data.frame (note the effect of unclass()!), built of (numeric,
character4 or logical) vectors, factors, (numeric) matrices, lists and/or data frames of
the same length5. The columns are implemented as list components. Data frames
usually have a names attribute for the variables (columns) and a row.names attribute
for the cases (rows). See also „Indexing“ below.
 functions / function closures: recursive structure. Have basic components formal

argument list (symbols, ‚symbol=default‘-constructs, ‚...‘), body and environment
(→ lexical scoping). Are of type closure and mode function. May be assigned to
symbols or anonymous. May also serve as function arguments or function return
values, e.g.: g <- function(f) function(v) sum(f(v)).

• other objects:
 calls: sometimes referred to as „unevaluated expressions“; are of mode call

1 logical is NA’s default type, it may get coerced to other types.
2 NaN⇒NA
3 see appendix
4 coerced into factors
5 no. of rows for the matrices and data frames, component length for the lists

2

 expressions: recursive structure. Are of mode expression. (statements =
syntactically correct expressions)
 names: are of mode name.

These three objects constitute as language objects the R language.
 symbols: (names of) R objects. Are of type symbol and mode name.
 NULL: marking a missing object. Has no modifyable properties.
 objects of type expression: contain parsed but unevaluated R statements
 objects of type builtin or special: built-in (“.Primitive()“) functions, e.g. c()
 objects of type promise: used for R’s lazy evaluation of function arguments
 objects of type ‚...‘: ‚...‘ is used for unspecified formal function arguments.
 objects of type environment: consist of a frame (set of symbol-value pairs) and a

pointer to an enclosing environment, e.g. .GlobalEnv
 objects of type pairlist: something internal
 objects of type any: rarely used

• have attributes (mostly as vectors; user-defined attributes may be added), e.g.:
 mode: see above. intrinsic attribute
 length: number of (highest level) elements6. intrinsic attribute
 dim: used to implement arrays7
 names: used to label the elements of a vector (/array) or list, or the variables of a

data frame. (For one-dimensional arrays, dimnames[[1]] is accessed.)
 dimnames: list of character vectors used to label the dimensions of an array.
 class: vector of character strings („class names“) used for OO programming8, e.g.

data.frame, c(“ordered“, “factor“) or table
 tsp: used for periodic time series
 levels: for factors; of type character
 contrasts: for factors
 row.names: to label the cases of a data frame
 rownames/colnames: first dimnames; = row.names/names in a data frame
 source: the source code of user defined functions
 comment: is handled by the function comment()

• Some functions in this context:
 typeof(), mode(), storage.mode(), attributes(), attr(), length(), dim(), names(),

dimnames(), class(), tsp(), levels(), contrasts(), rownames(), row.names(),
colnames(), mostly returning a vector (a list for attributes()); comment()
 vector(), matrix(), array(), factor(), ordered(), list(), data.frame(), function(), call(),

expression() (note the difference to as.expression()), creating the respective object
 is.object(), is.vector(), is.array(), is.matrix(), is.factor(), is.ordered(), is.list(),

is.data.frame(), is.function(), is.language(), is.call(), is.expression(), is.symbol()
(=is.name()), is.null(), is.pairlist(), is.environment(), is.table(), is.ts(), is.tskernel(),
is.atomic(), is.recursive(), is.logical(), is.integer(), is.double(), is.real(),
is.complex(), is.character(), is.numeric(), is.na() (vectorized), is.nan() (vect.),
is.finite (vect.), is.infinite (vect.), returning logical vectors (mostly of length 1)
 as.vector(), as.symbol() (=as.name()), as.numeric(), as.integer() etc, attempting a

coercion of objects/modes/types etc; unlist(). E.g.: x <- 1; eval(as.symbol(“x“)).

6 For data frames, this means number of columns (see above).
7 dim works also for lists, but is rarely used there. Try l <- list(1, 2); ll <- list(l, l); dim(ll) <- c(2,1) (Not list(l, l, dim=c(2, 1))!).
8 class() returns the implicit class (“matrix“, “array“ or the result of mode()) if an object has no class attribute.

3

Indexing
• Index operators:

 [, e.g. x[2,1,1]: General subscripting operator, selects top-level elements.
 [[, e.g. x[[2,1,1]]: Rarely used for vectors and matrices. Allows selection only of one

single element, otherwise similar to [, except (e.g.) for the attributes handling: [[
drops names and dimnames. See below for details.
 $, e.g. x$a or x$“a“: Selects a (named) list component by its list tag.

All forms extract or replace subsets (e.g., may be used on an assignment’s left side9).
They are nothing but functions, or more precisely subset operators. Even more
precisely: [[accesses single elements down the hierarchy, [accesses subsets on the
top level. The indices of [and [[may be computed using expressions, e.g. x[1+1].

• Indexing vectors with [:
 Indexing a vector by an index vector returns a vector of the specified elements. E.g.,

(3:1)[rep(1, times=2)] returns the vector c(3,3). The index vector may be of type
integer (all positive or all negative, selecting or deselecting elements; 0 has no
effect), logical (TRUE selects; recycling rules apply!), character (selecting
elements with matching names), or other numeric types (truncated to integer). For
an indexing factor, the integers of the underlying array are used, not the levels.
 x[] = x (but dropping „irrelevant“ attributes).

Indexing with [preserves names.
• Indexing arrays with [(using x <- array(8:1, dim=c(2,2,2)) as an example):

 A single element may be read into a vector of length 1 by addressing its position in
the array, e.g. x[1,2,1]; names (and of course dim and dimnames) are dropped. One
empty index position results in a vector; names (and of course dim) are dropped,
dimnames converted into names. More empty positions result in a subarray; names
are dropped, dimnames preserved and dim possibly reduced. Any index position
may more generally be filled with an index vector in the above sense, e.g.
x[TRUE,c(1,2),], returning a vector (possibly of length 1) or a subarray, with the
same handling of attributes. An empty index position is equivalent to the index
1:dim(x)[indexposition].
 A single index vector in the above sense accesses the data vector of the array and

returns a vector; names are preserved. E.g., x[5]. x[1:length(x)] is the data vector.
 x[] = x as for vectors (preserving dim, dimnames and names, unlike x[,,]).
 One or more elements may be read into a vector by an index matrix with one row

per addressed element. E.g., x[matrix(c(1,2,1), nrow=1, byrow=TRUE)] returns the
same result as x[1,2,1]. names are dropped.

0 „drops out“ of an index vector as described above. A single 0 in an index postion
returns an empty structure; names are dropped, dim is reduced and dimnames behave in
a complicated way. x[0] returns named numeric(0).
drop=FALSE prevents the reducing of dim or coercion into a vector.

• Indexing vectors or arrays by [with NA gives NA results; the exact behaviour depends
on NA’s type.

• which() finds the “TRUE“ indices of vectors or matrices, e.g.: which(3:1<2).
• Indexing lists (using lst <- list(age=3:1) as an example):

9 This also enables the extension of a vector or list, frequently starting from an empty object. E.g., l <- list(); l$“a“ <- “test“.
For arrays, this does not work.

4

List components are always numbered and may be named (by list tags, implemented as
names attribute). They may be accessed by constructs like lst[[1]], lst[[“age“]], lst$age
or lst$“age“; an incomplete list tag is allowed if its completion is unambigous. E.g., b
<- “a“; lst[[b]] is OK10. A [construct may also be used (as above), often appended to a
[[or $ constuct to make a selection within a list component, e.g. lst$“a“[2:3]. For lists,
[[selects any single (top-level) element (dropping names), whereas [returns a list of
the selected (top-level) element(s) (preserving names); an indexing vector in [[digs
deeper down the hierarchy11. Compare, e.g., lst[“age“] to lst[[“age“]]. Complex nesting
is possible; list components may be given through variables. E.g., for b <- “a“; lst2 <-
list(lst, b), lst2[[1]][1]$age[1] returns12 3, and lst2[[2]][1] returns “a“. Compare also the
different effects of list(3:1), list(3, 2, 1), list(age=3:1) and list(age<-3:1)!

• Indexing data frames and working with data frames (see also subset() and merge()):
As data frames are lists, indexing works just as well. The function attach() may be used
to place a data frame’s variables at position 2 (default) in the search path (see also
below). (Thus, they may be hidden if position 1 is filled!). detach() should be used
afterwards13. This functionality enables some intuitive „working hygiene“.

Scope and function evaluation
• Scoping is the internal search for the value of a symbol, most interestingly in the

context of functions. In the body of a function, variables are either supplied through the
formal argument list, local variables (both are bound) or unbound (=free)14. Any
variable appearing in the function body is first searched for in the function’s evaluation
environment, then in its defintion environment (which has become the parent
environment (enclosure) of the former by the call of the function) and so on up to the
global environment (=root of the workspace), then along the search path of
environments until the base package. (In R everything lives in (possibly nested)
environments, which are a nesting of frames (=set of local variables created in a
function). search() shows the search path.) Bound variables are already found on the
lowest level; supplied arguments are practically treated as local. Unbound variables are
not found on the lowest level. The mentioned nesting of the evaluation environment in
the definition environment makes R’s scoping lexical: The value of an unbound
variable is essentially determined by the bindings that were in effect at the time of the
creation of the function. In contrast, with static scoping as in S, it is determined on the
global environment level. (Dynamic scoping lets it be determined by the most recent (in
time) definition, jumping up the call stack. This is possible in R through special
functions beginning with „sys.“.) Some examples for R’s scoping behaviour:
 a <- 1; f <- function(x) {x+a}; a <- 10; f(0) returns 10.
 cube <- function(x) {sq <- function() x*x; x*sq()}; cube(2) returns 8.
 f <- function(x) {y <- 10; g <- function(x) x+y; return(g)}; h <- f(); h(3) returns 13.

• Handling of function arguments:

10 lstb, lst“b“, lst$1, lst[[age]] or lst[age] do not work here!
11 lst[[1]][[1]] and lst[[c(1,1)]] are equivalent. At the bottom level, [[digs no further: single index selection behaves as with [,
vector digging produces an error (compare lst[[1]][[1]][[1]], lst[[1]][[1]][1] and lst[[c(1,1,1)]]).
12 This is cumbersome for the equivalent lst2[[1]]$age[1]
13 In a different context, attach() and detach() may also take, e.g., a directory name as argument.
14 In a <- 1; f <- function() {print(a); a <- 2; a}; f(); a, the free variable a becomes local and does not change globally.

5

 Argument matching: Formal arguments are matched to supplied arguments first by
exact matching on tags, then by partial matching on tags, and finally by positional
matching. E.g., for f <- function(aa, bb, cc) aa+bb^cc, f(2, 3, aa=1) returns 9. For f
<- function(fun,fon) <body>, f(f=1, fo=2) is illegal, whereas f(f=1, fon=2) is OK.
The unspecified argument ‚...‘ absorbs any non-matched supplied argument and is
often used to pass on arguments to other functions; using it in the formal argument
list before the last position may cause matching problems.
 Argument evaluation: Default values may be defined for formal function arguments

using ‚symbol=default‘15. Defaults may be arbitrary expressions, even involving
other arguments of the same function. (missing() provides an alternative for setting
defaults.) Supplied and default arguments are treated differently. R implements call-
by-value and lazy evaluation, meaning that arguments are not evaluated until
needed. Thus, using side-effects programming in function arguments (like in f(x <-
y)) is bad style (but: x[i <- 1] is nice). (The expression used as an argument is only
stored in a slot of a promise, together with a pointer to the environment the function
was called from (in another slot). When (if) needed, the expression is evaluated
(sensitive to any changes of the environment pointed to) and stored in yet another
slot (avoiding a second evaluation). This is called forcing the promise. If a default
expression is accessed, the pointer points to the function’s local environment.)

Diverse topics
• R is an interpreted (not a compiled) language. For batch processing, programs should

be edited in a text editor and cut and pasted, or saved and „sourced“ using source(p)
after setting p <- “<path to program>“. Functions for help and session management
include ? (=help()), help.start(), help.search(), index.search(), example(), apropos(),
demo(), q() (=quit()), ls() (=objects()), rm() (=remove()), source(), sink(), save(),
save.image(), load(), library() etc. Sessions may be customized16 by the file Rprofile in
the subfolder etc of R’s home directory (valid for all sessions), the file .Rprofile in a
working directory, the .RData workspace image17 in a working directory and the
function .First() (defined in either of the two profile files)18 – e.g., source() or library()
commands could be included here. .Last() is executed at the very session end. Data
may be im- or exported by read.table() and write.table() (for data frames), scan(),
data(), write() and other functions (e.g. for SAS datasets). edit() edits data in a
spreadsheet style, e.g. new <- edit(data.frame()).

• Operators like ‚:‘, ‚–‘, ‚>=‘ or ‚<-‘, indexing constructs (see above) and even ‚{‘ are
nothing but functions. Operators follow a certain order of precedence19.

• R is case sensitive. ‚.‘ is used instead of ‚_‘; alphanumeric symbols may not start with a
digit, or ‚.‘ followed by a digit. Commands are separated by ‚;‘ or a newline, and
grouped by ‚{}‘. A comment starts with ‚#‘ and lasts until the end of the line, it may
not be placed inside strings or a function’s formal argument list. Character constants
are delimited by ‚‘‘ or ‚“‘, escape characters start with ‚\‘, e.g. \n, \t, \b. „Strange

15 Here, sometimes a vector shows the possible argument values, with its first (scalar) entry being the default.
16 in Windows installations – this may be slightly different under UNIX
17 .RData and the log file .Rhistory are created when saving the session. At the next saving, .Rhistory gets appended.
18 in this order of execution
19 see appendix

6

names“ may be used for list tags etc when given as text strings; this is not possible for
function arguments. Infix operators may be defined as %operator%. Note the effect of
“x“ <- 1; “x“; x! Careful: TRUE, if, function, ..., c, t, %*% etc can be overwritten!

• To show an object or its properties, it may be printed using print() or just its name20,
structure(), dput() or show() (which needs a class attribute). (quote() just quotes, see
below.) str() compactly shows an object’s structure. A user-defined function info() (to
be included in Rprofile) may aggregate the functions typeof(), mode(), storage.mode(),
length(), attributes(), and the is. family (see above) to return an alternative picture in
list form. A function no.dimnames() may be defined to show arrays without dimnames.

• Coercion (of objects and/or types, modes...) is frequently and generally sensibly
performed. E.g., when coercing numerics into logicals, the following happens:
NA→NA, NaN→NA, 0→FALSE, anything else→TRUE. And vice versa: NA→NA,
FALSE→0, TRUE→1. As an application, sum(1:8>7) returns 1.

• Array/Vector arithmetic:
 Simple forms of vector/array creation are, e.g., 3, c(3,2), 3:1, c(a=“b“). More

flexible is to use seq(), rep(), or some of the above mentioned functions like
matrix(), as.vector() etc. Recycling may be performed, e.g. array(0, dim=2:3).
Logical vectors may be created by conditions, e.g. 1:4>2.
 Many array/vector operations are performed elementwise (from left to right), they

are vectorized on the data vector. Arrays must have the same dim attribute. Vectors
must be of no greater length than arrays. Short vectors are recycled. The result is an
array with the common dim attribute of its array operands, or – if no array is present
– a vector of the size of the longest vector operand. E.g., 2*x.
 Important functions in this context are: The operators, order(), sort(), rev(), outer()

(very powerful, letting, e.g., functions be evaluated on a grid), aperm(), t() (note the
result of t(1:3)), cut(), diag() (with various meanings depending on the argument),
solve() (also for matrix inversion), cbind() and rbind() (binding together vectors
and/or matrices21 by columns or rows (and possibly recycling shorter vectors),
always returning a matrix, e.g. rbind(1:2)). The concatenation function c() removes
any dim and dimnames attribute22, it may also take lists.

• Control structures: if()-else (vectorized version: ifelse()), switch() and the looping
statements repeat, while() and for() (and next and break) are available. However, a
whole object view should be preferred to explicit looping if possible. Functions like the
powerful apply() family perform implicit looping, and many operations are vectorized.
any() and all() can be helpful. For switch(), eval(x[[condition]]) may be an alternative.

• (Frequency) tables may be calculated from equal length factors by table(). They are
arrays with dim and dimnames attribute and class table. The dimension vector is built
of the lengths of levels vector of each factor; the factor names and levels are taken for
the dimnames list.

• Object-oriented (OO) programming23: R uses the class concept, methods dispatching
on classes, and the idea of inheritance. The most important applications are the print,
summary and plot methods. The class attribute, a vector of character „class names“,

20 which implicitly calls print()
21 of the same column size for cbind, row size for rbind
22 c() coerces all arguments to a common type. For a <- 1:3, b <- 4:5, compare c(a, b), cat(a, b), paste(a, b), and Cs(a, b) (in the
Hmisc library), and further compare a, “a“, quote(a), as.character(a), print(a), dput(a), show(a), as.symbol(a), as.expression(a).
23 This refers to the so-called S3 scheme. A new S4 scheme is available. S3 and S4 methods may exist side by side.

7

implements the class concept. The mere string becomes meaningful via method
dispatching, i.e. with generic functions ramifying into class specific (or default)
methods: A correct method is sought corresponding to the first element of the class
attribute of the generic’s first argument. If no such method is found, this class
attribute‘s second element counts, and so on. If no method matches or if the generic’s
first argument has no class attribute, a default method is looked for. Important
functions in the context of method dispatching are UseMethod() (to define a generic
function) and NextMethod() (to implement inheritance); group methods may also be
defined for the function groups ‚Math‘, ‚Summary‘ and ‚Ops‘. unclass() removes an
object’s class; methods() informs about available methods/classes.

• Computing on the language:
 Calls, expressions and functions are directly modifyable language objects. Calls

have a list-like syntax; related functions are, e.g., quote(), eval(), as.call(), as.list(),
as.name() or deparse().
 substitute() replaces its first argument by another expression that may have passed

through a function argument (useful: deparse(substitute(arg))) or is looked up in a
list (e.g. substitute(fun(a), list(a=1))); this is related to promises. See also replace().
 Objects of mode expression are of a similar structure as call objects; they are

evaluated by eval().
 Functions/closures may be directly manipulated by formals() (returning a (tagged)

pairlist, in contrast to args()), body() and environment(), also on an assignment’s left
side. Note also the different effect of entering, e.g., q and q().

• Global options are stored in the list .Options, they are controlled by options(),
getOption() and check.options().

• The operating system may be accessed through a number of functions, e.g. Sys.time(),
file.copy() or dirname(); R is able to interface with foreign languages as C, e.g.
through .C() or .External().

• Exception handling is controlled by functions as stop() or warning() (and warnings()),
and the options warn, warning.expression and error. on.exit() provides function exit
code (regardless of whether the exit was natural or not), e.g. for cleanup.

• Debugging is performed with the functions browser(), debug(), undebug(), trace() and
untrace(). browser() and debug() provide a useful special prompt.

Appendix: Extensions and tables
• The XEmacs extension ESS provides an intelligent environment for R program editing.

R‘s Hmisc library includes useful functions such as contents(), Cs(), describe(), label(),
ldBands(), prn(), sas.get(), sedit(), src() and summarize().

• Basic vector types with associated mode and storage.mode:
type mode storage.mode
logical logical logical
integer numeric integer
double numeric double
complex complex complex
character character character

• Operators, in order of precedence (highest first; operators of equal rank are evaluated
from left to right except where indicated):

8

 [[[indexing, binary
: : name space/variable name separator
$ @ component/slot extraction, binary
^ exponentiation, binary (evaluated right to left)
- + unary minus and plus
: sequence operator, binary (in model formulae: interaction)
%xyz% special binary operators; xyz may be replaced by anything. R already

provides %% (modulus), %/% (integer divide), %*% (matrix product),
%o% (outer product, equiv. to outer(arg1, arg2, “*“)), %x% (Kronecker
product), %in% (matching operator (in model formulae: nesting)).

* / multiply, divide, binary
+ - binary add, subtract
> < == >= <= != ordering and comparison, binary24
! negation, unary
& && and (vectorized and non-vectorized), binary
| || or (vectorized and non-vectorized), binary
~ used in model formulae, unary or binary
-> ->> assignment, binary

= assignment (evaluated right to left), binary25
<- <<- assignment (evaluated right to left), binary
? help, unary or binary

• Probability distributions: The following distributions are available and may be used
with the prefixes d (density, first argument x), p (CDF, first arg. q), q (quantile
function, first argument p), and r (random deviate, first argument n26).

Distribution R name additional arguments27
beta beta shape1, shape2, ncp
binomial binom size, prob
Cauchy cauchy location, scale
chi-squared chisq df, ncp
exponential exp rate
F f df1, df2, ncp
gamma gamma shape, scale
geometric geom prob
hypergeometric hyper m, n, k
log-normal lnorm meanlog, sdlog
logistic logis location, scale
negative binomial nbinom size, prob
normal norm mean, sd
Poisson pois lambda
Student’s t t df, ncp
uniform unif min, max
Weibull weibull shape, scale
Wilcoxon wilcox m, n

24 Caution with floating point numbers! E.g., try v <- seq(0.7, 0.8, by=0.1); v == 0.8. (Better: eps <- 1e-15; abs(v-0.8) < eps. Or
even better: v <- seq(7, 8)/10; v == 0.8. The most accurate method is implemented in the function all.equal.numeric().)
25 ‚<-‘ can be used anywhere, ‚=‘ is only allowed at the top level (i.e., in the complete expression typed by the user) or as one
of the subexpressions in a braced list of expressions. In general, the use of ‚=‘ should be restricted to named function
arguments. The „superassignment“ operators ‚<<-‘ and ‚->>‘ or the function assign() may generally be used for global and
permanent assignments within a function. As assign() does not dispatch assignment methods, it cannot set vector elements,
names, attributes etc. Similarly, get() does not respect subscripting operators or assignment functions. (These two functions are
not restricted to names that are identifiers.)
26 nn for rhyper and rwilcox
27 The ncp argument is currently almost only available for the CDFs. The p- and q-functions have the additional logical
arguments lower.tail and log.p, the d-functions have log.

