
THÈSE / ENS CACHAN - BRETAGNE
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE
CACHAN

Mention: INFORMATIQUE
Ecole doctorale MATISSE

présentée par

Houssem Eddine Chihoub
préparée à l’unité de recherche no 6074 - IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires

Managing Consistency

for Big Data Applications:

Tradeoffs &
Self-Adaptiveness

Thèse à soutenir à Rennes
devant le jury composé de:

Pierre Sens / rapporteur
Professeur, Université de Paris 6, France

Toni Cortes / rapporteur
Professeur des universités, Université Polytechnique de Catalunya, Espagne

Esther Pacitti / examinateur
Professeur, Université de Montpellier, France

Luc Bougé / examinateur
Professeur, ENS Cachan Antenne de Bretagne, France

Gabriel Antoniu / directeur de thèse
Directeur de recherche, INRIA Rennes, France

Maria S. Pérez / co-directeur de thèse
Professeur des universités, Université Polytechnique de Madrid , Espagne

i

Contents

1 Introduction 1
1.1 Context . 1
1.2 Contributions . 2
1.3 Publications . 4
1.4 Organization of the Manuscript . 5

Part I – Context: Consistency Management for Big Data 7

2 Big Data Systems and Cloud Computing: A Short Overview 9
2.1 Big Data . 10

2.1.1 Big Data Definitions . 10
2.1.2 Big Data Platforms . 11
2.1.3 Big Data Infrastructures . 12

2.2 Cloud Computing . 14
2.2.1 Cloud Service Levels . 15
2.2.2 Cloud Computing Models . 16
2.2.3 Cloud Computing Platforms . 17

2.3 Big Data Applications in the Cloud: Challenges and Issues 19
2.3.1 Big Data Challenges . 19
2.3.2 Our Focus: Replication and Consistency 21

2.4 Summary . 22

3 Consistency Management in the Cloud 23
3.1 The CAP theorem . 24
3.2 Consistency Models . 26

3.2.1 Strong Consistency . 27
3.2.2 Weak Consistency . 27
3.2.3 Eventual Consistency . 28
3.2.4 Causal Consistency . 29
3.2.5 Timeline Consistency . 30
3.2.6 Discussion . 31

3.3 Cloud Storage Systems . 32
3.3.1 Amazon Dynamo . 32

ii Contents

3.3.2 Cassandra . 33
3.3.3 Yahoo! PNUTS . 34
3.3.4 Google Spanner . 35
3.3.5 Discussion . 37

3.4 Adaptive Consistency . 38
3.4.1 RedBlue Consistency . 38
3.4.2 Consistency Rationing . 40

3.5 Summary . 41

Part II – Contributions: Adaptive Consistency Approaches for Cloud Com-
puting 43

4 Consistency vs. Performance: Automated Self-Adaptive Consistency in the Cloud 45
4.1 Motivation . 46
4.2 Harmony: Elastic Adaptive Consistency Model 47

4.2.1 Zoom on Eventual Consistency Levels in Cloud Storage 47
4.2.2 Harmony . 47

4.3 Stale Reads Rate Estimation . 49
4.3.1 Stale read probability . 49
4.3.2 Computation of the number of replicas Xn 51

4.4 Implementation & Experimental Evaluation . 52
4.4.1 Harmony Implementation . 52
4.4.2 Harmony Evaluation . 52
4.4.3 Estimation Accuracy of Stale Reads Rate 58

4.5 Discussion . 59
4.6 Summary . 60

5 Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud 61
5.1 Motivation . 62
5.2 How Much does Storage Cost in the Cloud ? 63

5.2.1 Cloud Storage Service and Monetary Cost 63
5.2.2 Cost Model . 64
5.2.3 Consistency vs. Cost: Practical View . 68

5.3 Bismar: Cost-Efficient Consistency Model . 73
5.3.1 A metric: Consistency-Cost Efficiency 73
5.3.2 Bismar . 73

5.4 Experimental Evaluation . 75
5.4.1 Consistency–Cost Efficiency . 76
5.4.2 Monetary Cost . 76
5.4.3 Staleness vs. monetary cost . 78
5.4.4 Zoom on resource cost in Bismar. 78

5.5 Discussion . 79
5.6 Summary . 80

6 Consistency vs. Energy Consumption: Analysis and Investigation of Consistency

Contents iii

Management impact on Energy Consumption 81
6.1 Motivation . 82
6.2 Insight into Consistency–Energy Consumption Tradeoff 82

6.2.1 Tradeoff Practical View . 82
6.2.2 Read/Write Ratio Impact . 86
6.2.3 Nodes Bias in the Storage Cluster . 87

6.3 Adaptive Configuration of the Storage Cluster 89
6.3.1 Reconfiguration Approach . 89
6.3.2 Experimental Evaluation . 90

6.4 Discussion . 93
6.5 Summary . 94

7 Chameleon: Customized Application-Specific Consistency by means of Behavior
Modeling 95
7.1 Motivation . 96
7.2 General Design . 97

7.2.1 Design Goals . 97
7.2.2 Use Cases . 98
7.2.3 Application Data Access Behavior Modeling 99
7.2.4 Rule-based Consistency-State Association 103
7.2.5 Prediction-Based Customized Consistency 108

7.3 Implementation and Experimental Evaluations 109
7.3.1 Implementation . 109
7.3.2 Model Evaluation: Clustering and Classification 110
7.3.3 Customized Consistency: Evaluation 114

7.4 Discussion . 117
7.5 Summary . 118

Part III – Conclusions and Perspectives 119

8 Conclusions 121
8.1 Achievements . 122
8.2 Perspectives . 124

iv Contents

1

Chapter 1
Introduction

Contents
1.1 Context . 1
1.2 Contributions . 2
1.3 Publications . 4
1.4 Organization of the Manuscript . 5

1.1 Context

RECENTLY, data sizes have been growing exponentially within many organizations. In
2010, Eric Schmidt, the CEO of Google at the time, estimated the size of the World
Wide Web at roughly 5 million terabytes of data [2] while the largest storage cluster

within a corporation such as Facebook has more than 100 petabyte of Data in 2013 [122]. Data
is everywhere and comes from multiple sources: social media, smart phones, sensors etc.
This data tsunami, known as Big Data, introduces numerous complications to the different
aspects of data storage and management. These complications are due to the overwhelming
sizes, but also the velocity required and the complexity of data coming from different sources
with different requirements at a high load variability.

In order to deal with the related challenges, many Big Data systems rely on large and
novel infrastructures, as well as new platforms and programming models. In this context,
the emerging paradigm of Cloud Computing offers excellent means for Big Data. Within this
paradigm, users can lease on-demand computing and storage resources in a Pay-As-You-Go
manner. Thereby, corporations can acquire the resources needed for their Big Data appli-
cations at a low cost when needed. Meanwhile, they avoid large investments on physical
infrastructures that need huge efforts for building and maintaining them, which, in addi-
tion, requires a high level of expertise.

2 Chapter 1 – Introduction

Within cloud storage, replication is a very important feature for Big Data. At wide area
cloud scales, data is replicated across multiple data centers in order to deal with fast re-
sponse and local availability requirements. Therefore, clients can request data locally from a
replica within the closest datacenter and get a fast response. Moreover, geographical repli-
cation provides data durability, fault tolerance and disaster recovery by duplicating redun-
dant data in different geographical areas. However, one issue that arises with replication
is guaranteeing data consistency across replicas. In this context, insuring strong consistency
requires huge synchronization efforts across different locations and thus, exposes the users
to high network latencies. This affects the performance and the availability of cloud storage
solutions. One particular alternative that has become very popular is eventual consistency.
Eventual consistency may tolerate inconsistency at some points in time but guarantees the
convergence of all replicas to the same state at a future time.

The management of consistency heavily impacts storage systems. Furthermore, with
Big Data scales, the management of consistency is critical to meet performance, availability,
and monetary cost requirements. Traditional storage systems and databases that implement
rigorous models such as strong consistency have shown their limitations in meeting the
scalability demands and the performance requirements of nowadays Big Data applications.
In this context, flexible and adaptive consistency solutions that consider the application re-
quirements and only provide the adequate guarantees, should be at the heart of the Big Data
revolution.

1.2 Contributions

The contributions of this Ph.D research can be summarized as follows.

Self–Adaptive Consistency Model: Consistency when Needed, Performance
when Possible

Eventual consistency is very popular within cloud storage systems as a model that provides
high availability and fast responses. However, this comes at the cost of a high probability
of reading stale data, as the replicas involved in the reads may not hold the most recent up-
date. In this work, we propose a novel approach, named Harmony, which adaptively tunes
the consistency level at runtime according to the application requirements. The key idea
behind Harmony is an intelligent estimation model of stale reads rate. This model allows to
elastically scale up or down the number of replicas involved in read operations to maintain
a low (possibly zero) tolerable fraction of stale reads. As a result, Harmony can meet the
desired consistency of the application while achieving good performance. We have imple-
mented Harmony and performed extensive evaluations with the Cassandra cloud storage on
Grid’5000 testbed and on Amazon EC2. The results demonstrate that Harmony can achieve
good performance without exceeding the tolerated number of stale reads.

Cost–Efficient Consistency Management in the Cloud

Recently, many organizations have moved their data to the cloud in order to provide scal-
able, reliable and highly available services at a low cost. In this context, monetary cost is

1.2 – Contributions 3

extremely important factor as Cloud Computing is an economical–driven paradigm. How-
ever, it is rarely considered in the studies related to consistency management. In fact, most
optimization efforts concentrate on how to provide adequate tradeoffs between consistency
guarantees and performance. In this work, we argue that monetary cost should be taken into
consideration when evaluating or selecting the level of consistency (number of the replicas
involved in access operations) in the cloud. Accordingly, we define a new metric called
consistency-cost efficiency. Based on this metric, we present a simple, yet efficient econom-
ical consistency model, called Bismar. Bismar adaptively tunes the consistency level at run-
time in order to reduce the monetary cost while simultaneously maintaining a low fraction
of stale reads. Experimental evaluations with the Cassandra cloud storage on the Grid’5000
testbed demonstrate the validity of the metric and the effectiveness of Bismar in reducing the
monetary cost with only a minimal fraction of stale reads.

Consistency vs. Energy Consumption: Analysis and Investigation

Energy consumption within data centers has grown exponentially in the recent years. In the
era of Big Data, storage and data–intensive applications are one of the main causes of the
high power usage. However, few studies have been dedicated to the analysis of energy con-
sumption of storage systems. Moreover, the impact of consistency management has hardly
been investigated in spite of its high importance. In this work, we address this particular
issue. We provide an analysis study that investigates the energy consumption of applica-
tion workloads with different consistency models. Thereafter, we leverage the observations
about the power and the resource usage with each consistency level in order to provide in-
sight into energy–saving practices. In this context, we introduce adaptive reconfigurations
of the storage system cluster according to the applied level of consistency. Our experimental
evaluations on Cassandra deployed on Grid’5000 demonstrate the heavy impact of consis-
tency management on the energy consumption showing a tradeoff between consistency and
energy saving. Moreover, they show how reconfiguring the storage organization can lead to
energy saving, enhanced performance, and stronger consistency guarantees.

Customized Consistency by means of Application Behavior Modeling

Multiple Big Data applications and services are being deployed worldwide to serve a very
large number of clients nowadays. These applications differ in their performance demands
and consistency requirements. Understanding such requirements at the storage system level
is not possible. The high-level consistency requirements of an application are not reflected
at the system level. In this context, the consequences of a stale read are not the same for all
types of applications. For instance, a stale read for a Web Shop could result in serious conse-
quences compared to a stale read within social media applications. In this work, in contrast
to the related work, we focus on managing consistency at the application level rather than
on the system side. In order to achieve this goal, we propose an offline modeling approach
of the application access behavior based on machine learning techniques. Furthermore, we
introduce an algorithm that associates a consistency policy with each application state au-
tomatically. At runtime, we introduce the Chameleon approach that leverages the model of
the application behavior in order to provide customized consistency specific to that appli-
cation. First, the application state is recognized. Then, a prediction algorithm selects the

4 Chapter 1 – Introduction

adequate consistency policy for the expected application state at the next time period. Ex-
perimental evaluations show the high accuracy of our modeling approach, exceeding 96%
of correct classification of the application states. Moreover, the conducted experiments on
Grid’5000 show how Chameleon adapts, for every time period. According to the behavior of
the application and its consistency requirements, while providing best-effort performance.

1.3 Publications

Book Chapter

• Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and María S. Pérez, Con-
sistency Management in Cloud Storage Systems, accepted Book Chapter to be published
in the book Advances in data processing techniques in the era of Big Data, to be published
by CRC PRESS, end of 2013. Editors: Sherif Sakr and Mohamed Medhat Gaber.

International Conferences

• Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and María S. Pérez, Har-
mony: Towards automated self-adaptive consistency in cloud storage, in the proceedings of
the 2012 IEEE International Conference on Cluster Computing (CLUSTER’12), Beijing,
September 2012. CORE Rank A (acceptance rate 28%).

• Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and María S. Pérez,
Consistency in the Cloud: When Money Does Matter!, in the proceedings of the
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid, Computing
(CCGRID’13), Delft, May 2013. CORE Rank A (acceptance rate 22%).

Posters at International Conferences

• Houssem-Eddine Chihoub, Self-Adaptive Cost-Efficient Consistency Management in the
Cloud, in The 25th IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2013): PhD Forum (2013), Boston, May 2013.

• Houssem-Eddine Chihoub, Gabriel Antoniu, and María S. Pérez, Towards a scalable,
fault-tolerant, self-adaptive storage for the clouds, in the EuroSys 2011 Doctoral Workshop,
Salzburg, April 2011.

Research Reports

• Houssem-Eddine Chihoub, María S. Pérez, Gabriel Antoniu, and Luc Bougé, Analysis
and Investigation of Consistency Management on Energy Consumption in the Cloud.

• Houssem-Eddine Chihoub, Shadi Ibrahim, Yue Li, Gabriel Antoniu, and María S.
Pérez, Chameleon: Application-Specific Customized Consistency by means of Application Be-
havior Modeling.

1.4 – Organization of the Manuscript 5

1.4 Organization of the Manuscript

The remaining part of this manuscript is organized in three parts.

The first part: presents the context of our research. Chapter 2 introduces the general back-
ground of Big Data, and presents its platforms and infrastructures. In addition, it presents
the emerging paradigm of Cloud Computing as an excellent mean to deal with the com-
plexity of Big Data management. Then, this chapter addresses the challenges of Big Data on
clouds. It highlights the consistency management issue and its potential impact on the stor-
age solutions. In this context, Chapter 3 provides a survey study of consistency management
in the cloud. First, the CAP theorem and its tradeoffs are presented. Then, various consis-
tency models are presented and discussed. Thereafter, this chapter describes some popular
cloud storage systems and highlights their implementations of consistency management. Fi-
nally, the chapter introduces adaptive consistency policies as efficient models to cope with
the load variability of Big Data applications in the cloud.

The second part: consists of 4 chapters that present the core contributions of this work.
Chapters 4, 5, and 6 are dedicated to the consistency management and our introduced so-
lutions on the system side. In Chapter 4, we adress the consistency–performance tradeoff.
We introduce our approach, Harmony, to provide good performance without violating the
consistency requirements of the application. While the performance level is of dramatic im-
portance, the monetary cost of the storage service in clouds is, arguably, of equal relevance.
Chapter 5 investigates the impact of consistency management on the monetary cost. More-
over, this chapter describes our approach Bismar. Bismar leverages a new consistency–cost
efficiency metric in order to provide a consistency management that reduces the monetary
cost and provide adequate consistency guaratntees in the cloud. Similar to Chapters 4 and 5,
Chapter 6 explores the impact of consistency models on the energy consumption of the stor-
age system cluster. Moreover, in this chapter, we show the energy savings of adaptive recon-
figurations (according to every consistency level) of the storage system cluster. In order to
complement our work on the system side, Chapter 7 introduces Chameleon, our consistency
management approach at the application level. We propose a behavior modeling approach
of Big Data applications. The model, in addition to the application semantics, is leveraged
to provide customized consistency that selects the adequate consistency policy at each time
period according to the application requirements.

The third part: consists of Chapter 8. In this chapter, we summarize our contributions and
present our conclusions about the management of consistency for Big Data applications in
the cloud. Moreover, we discuss the limitations in this context and describe the perspectives
in this area that can lead to even more efficient storage management in the cloud.

6 Chapter 1 – Introduction

7

Part I

Context: Consistency Management for
Big Data

9

Chapter 2
Big Data Systems and Cloud

Computing: A Short Overview

Contents
2.1 Big Data . 10

2.1.1 Big Data Definitions . 10
2.1.2 Big Data Platforms . 11
2.1.3 Big Data Infrastructures . 12

2.2 Cloud Computing . 14
2.2.1 Cloud Service Levels . 15
2.2.2 Cloud Computing Models . 16
2.2.3 Cloud Computing Platforms . 17

2.3 Big Data Applications in the Cloud: Challenges and Issues 19
2.3.1 Big Data Challenges . 19
2.3.2 Our Focus: Replication and Consistency 21

2.4 Summary . 22

IN the recent years, data sizes have been growing exponentially within many corporations
and organizations [122, 136]. The total data amount produced in 2010 is estimated to be
over one zettabyte (1021 bytes) while it is predicted to grow by a factor of 50x over the

next decade [136]. This Data Deluge phenomenon, later known as Big Data, introduces many
challenges and problems. Therefore, experts deal with issues that relate to how to store, man-
age, process and query data on a daily basis. These problems were dealt with for many years
at big corporations such as Google, Amazon, and Microsoft, relying on innovative software
platforms but mainly large-scale infrastructures. On the other hand, small companies re-
mained unequipped. The continuous growth rate of data size and variety demonstrates the

10 Chapter 2 – Big Data Systems and Cloud Computing: A Short Overview

necessity for innovative and efficient ways in order to address the emerging problems. Or-
ganizations should expect to handle and process overwhelming amounts of data that exceed
their capacities. In this context, Cloud Computing offers excellent tools to deal with the most
challenging aspects of Big Data. In this chapter, we introduce the Big Data phenomenon as
well as platforms and infrastructures to deal with the related challenges. Then, we zoom
on Cloud Computing as an efficient infrastructure for leveraging Big Data management. We
finally, discuss Big Data issues and challenges and how major cloud vendors tend to deal
with them. Thereby, we highlight replication in the context of Cloud Computing, its features
and issues.

2.1 Big Data

2.1.1 Big Data Definitions

Big Data is more than growing sizes of datasets, but rather the complexity that such a growth
generates with regard to different aspects of data handling. In [133], Stonebraker introduces
Big Data according to the "3Vs" model [1]. Big Data refers to datasets that are of a big volume,
need big velocity, or exhibit big variety.

Big Volume. Nowadays, data sizes are exponentially increasing. Multiple companies and
organizations are experiencing Data Deluge phenomenon due to multiple factors such
as stored data collected over the years, data streaming and sharing over social me-
dia, increasing sensors collected data, etc. [31]. Stonebraker considers the Big Volume
property as important and challenging for two types of analytics: “small analytics”
and “big analytics”. Small analytics include smaller operations such as running SQL
analytics (count, sum, max, min, and avg), while big analytics are more complex opera-
tions that can be very expensive on very large datasets, such as clustering, regressions,
and machine learning.

Big Velocity. For many organizations, the most challenging aspect of Big Data is not exclu-
sively the large volume. It is rather, how fast to process data to meet demands [1, 31].
A wide range of applications require fast data processing in near real-time manner, no
matter how overwhelming the size of data. For instance, electronic trading, RFID tags
and smart metering, ad placement on Web pages, fit in this class of applications.

Big Variety. Data comes in various formats: from text data to video and audio, from tra-
ditional DBMS (DataBase Management Systems) formats to semi-structured data (e.g.
XML), to large binary objects. The primary challenge is to integrate all these types of
data, and manage them in an efficient way. SAS [31] estimates that 80% of organization
data are not numerical. Nevertheless, those data should be included in analytics and
decision–making.

In addition to the aforementioned 3 dimensions of Big Data in the form of volume, ve-
locity and variability, SAS [31] defines two complementary dimensions.

Big Variability. In addition to velocity and variety, data may exhibit Big Variability in the
form of inconsistent or non-regular data flows with periodic peaks. In particular, this

2.1 – Big Data 11

is a typical behavior for applications such as social media that might suddenly expe-
rience high loads during trending news or with seasonal events. In this context, Big
Data variability might be particularly challenging to manage, for instance when social
media is involved.

Big Complexity. Managing huge volumes of data that come from multiples sources and sys-
tems is most of the times difficult. Management aspects can be particularly challenging
for linking, matching, cleansing and transforming data across systems and platforms.

2.1.2 Big Data Platforms

Traditional storage systems such as DBMS and data querying models fail to meet Big Data
requirements. In order to address this issue, multiple storage solutions and data processing
models were introduced.

2.1.2.1 Parallel File Systems

Parallel file systems were introduced in order to overcome centralized file systems scalability
and failure tolerance limitations. They rely on decentralized storage that enables scalable
performance and fast access.

The massively parallel design of this class of file systems allows the distribution of work-
loads over multiple servers, that might be spread over wide areas, for data accesses and
sometimes metadata accesses, thus providing scalable performance. Moreover, thanks to
replication, the file systems might have faster access when reading data from closer replicas.

In order to provide such scalability features, most parallel file system designers are reluc-
tant to stick to POSIX semantics. POSIX standard, much like ACID requirements, imposes
a strong semantics and makes various constraints on data handling that are penalizing for
system performance and present a primary bottleneck for the system scalability. However,
many file systems such as GPFS [113] consider that POSIX compliance is very important
in spite of the performance overhead. Other systems tend to provide a minimal POSIX-
compliant data access interface even though the system itself is not fully POSIX-compliant,
like Luster file system [114]. On the other hand, modern file systems, such as PVFS [38],
Ceph [129], Google File System [63], and HDFS [69], trade POSIX compliance for better per-
formance, scalability and availability.

2.1.2.2 NoSQL Datastores

Over the last few years, RDBMS (Relational DataBase Management Systems) have shown
their scalability limits to face Big Data overwhelming. RDBMS designs and query models
(mainly SQL) are based on strong ACID semantics (Atomicity, Consistency, Isolation, Dura-
bility) that for many years were considered as unavoidable in order to provide a “correct”
model. However, with the growing scales of applications, in the era of Big Data, impos-
ing such semantics presents unprecedented limitations [35]. The NoSQL movement rejects
part or all of the ACID semantics in order to provide scalability, availability and high per-
formance. NoSQL datastores generally rely on a much simpler data queering models than
SQL, where accesses are key based and data are schematized in a key/value or key/values

12 Chapter 2 – Big Data Systems and Cloud Computing: A Short Overview

manner. This enables data to be stored and served in a massively distributed way based on
adequate distribution algorithms and data structures. Nowadays, NoSQL data stores and
storage systems such as Amazon Dynamo [49], Google Big Table [40], and Cassandra [85,
18] are proven to be very efficient over scaling to serve data at the planet scale.

These systems are usually designed for a specific class of applications (e.g. Web applica-
tions, document storage, etc.). Accordingly, they rely on designs that might relax or forfeit
part of the strong semantics in order to trade it for better performance, availability, and scal-
ability. For instance, Amazon Dynamo relaxes strong consistency for several services that do
not strictly require it, and trades it for very high availability and fast data access. Moreover,
these systems are, in general, easily integrated with Hadoop for more complex queries and
analytics at a wide scale in real-time.

2.1.2.3 MapReduce

MapReduce [48] is a programming model introduced by Google to provide efficient process-
ing for large data sets in a massively parallel way. MapReduce frameworks consist of two
main phases: the Map phase and the Reduce phase. The users specify a map function that di-
vides the input into sub-problems and generates intermediate data in the form of key/value
pairs. These intermediate data are further passed to a reduce function also specified by the
users. The reduce phase merges all the values associated with the same intermediate key.

Many implementations have appeared since the introduction of MapReduce and its im-
plementation within Google. Google implementation can be used within Google App En-
gine cloud [67]. The most popular implementation of MapReduce is Hadoop [20]. Hadoop
gained major support from multiple corporations and organizations since its introduction,
which promoted MapReduce as an efficient model for Big Data processing. The Hadoop
project is an open-source collection of Apache sub-projects. They include Apache Hadoop
MapReduce framework, Apache HDFS file system [69], and HBase [21] datastore among
others. Hadoop is widely used nowadays at companies that deal with data deluge. Yahoo!
was one of the first corporations to sponsor Hadoop and use it in production to produce
data for Yahoo! Web search [70]. In 2011, Facebook claims that their Hadoop deployment
with Corona [122] is the largest one in production, roughly processing 30 PB of data (100 PB
in 2013). Moreover, cloud vendors provide their clients with Hadoop-based services that are
very simple to deploy and to put into production such as Amazon Elastic MapReduce [10].

MapReduce has become the natural data processing model for Big Data as it provides
scalability, availability, performance, and reliability whereas traditional RDBMS (with their
SQL-based query model) fail in meeting the scalability demands. MapReduce frameworks
such as Hadoop are able to process data efficiently at large scales to replace SQL complex
queries most of the time. In this context, a wide range of applications were developed within
a MapReduce framework including data distributed querying applications, data analytics
applications, parallel sort applications, and data clustering and machine learning applica-
tions.

2.1.3 Big Data Infrastructures

The phenomenal growth of Big Data requires efficient infrastructures and novel computing
paradigms in order to meet the huge volumes of data and their big velocity. Hereafter, we

2.1 – Big Data 13

present three common infrastructure models that offer excellent means to manage Big Data.

2.1.3.1 Clusters

Cluster computing consists in connecting a set of computers with their regular software
stack (e.g. operating systems) together through, commonly, local area networks (LAN) to
build one global system. Cluster computing was one of the primary inspirations for efficient
distributed computing. The primary aim of this computing paradigm is to provide better
performance, and availability at a low cost.

Over the years, cluster computing tools and paradigms evolved to reach high efficiency.
Nowadays, building a cluster has become easy with support for efficient job scheduling,
and load balancing. Moreover, cluster users can rely on a mature stack of standardized and
dedicated tools such as Linux operating systems, message passing interface (MPI) tools [98],
and various monitoring tools to run a wide range of applications.

In the era of Big Data, it is common for organizations to build dedicated clusters that
usually consist of commodity hardware. These clusters run Big Data platforms (such as
Hadoop and NoSQL systems), to host dramatically large volumes of data efficiently. They
enable meanwhile, real-time processing and high degree of availability. Such cluster sizes
may vary from tens of nodes to tens of thousands of nodes [122].

In the area of high performance computing (HPC), Supercomputers that consist of hun-
dreds of thousands of cores can run high-performance applications that exhibit high I/O
demands. These supercomputers have dedicated massively-parallel architectures to meet
the high computation demands and the increasing storage needs of HPC.

2.1.3.2 Grids

In their attempt to define “Grid Computing”, Foster and Kesselman qualify a computational
grid as “a hardware and software infrastructure that provides dependable, consistent, pervasive, and
inexpensive access to high-end computational capabilities.” [61]

Four years later, Ian Foster reformulates his definition as a checklist [60]. Accordingly, a
grid is a system that:

• Provides coordination over resources for users with no centralized control.

• Provides standard, open general-purpose protocols and interfaces.

• Deliver nontrivial qualities of service.

Grid Computing addresses, generally speaking, the federation and the coordination of
heterogeneous sub-organizations and resources that might be dispersed over geographically
remote areas. It aims at hiding the complexity of the coordination of sub-systems from the
users and exposes them the illusion of one global system instead.

14 Chapter 2 – Big Data Systems and Cloud Computing: A Short Overview

2.1.3.3 Clouds

Parallel and distributed computing have been evolving over the years so as to provide better
quality of service to users while insuring efficiency in terms of performance, cost, and failure
tolerance. A newly emerged computing paradigm is Cloud Computing. In this paradigm,
software and/or hardware are delivered as a service over a computer network, typically
internet. Cloud services differ in their abstraction level. They can be categorized into three
levels: Infrastructure, Platform, and Software.

Since its emergence, Cloud Computing has immediately been adopted by Big Data ap-
plications. For many organizations, acquiring resources in a Pay-as-You-Go manner in order
to scale out their Big Data platforms when required, was long-time needed, and the cloud
providers offer just that. Moreover, most of cloud providers offer Big Data platforms as a
service. They enable clients to run their applications without worrying about the infras-
tructure management and its costly maintenance. Nowadays, it is just natural for emerging
companies, such as Netflix [27] that offers a video on-demand service, host and manage all
their data in the cloud (Amazon EC2 [9]).

In the next section, we further highlight this paradigm of Cloud Computing as a natural
and excellent mean for Big Data.

2.2 Cloud Computing

Cloud Computing is the on-demand delivery of IT resources via the Internet with Pay-As-
You-Go pricing [134]. As a newly emerged computing paradigm, several attempts to define
Cloud Computing were introduced [25, 130, 36]. Buyya et al. define a cloud as “a type of
parallel and distributed system consisting of a collection of inter-connected and virtualized comput-
ers that are dynamically provisioned and presented as one or more unified computing resource(s)
based on service-level agreements established through negotiation between the service provider and
consumers.”

In this context, Cloud Computing is an economy -and business- driven paradigm. The
cloud provider and the customers establish an SLA (Service Level Agreement) contract that
formally defines the service delivered. The customers can specify their needs in terms of
resources, performance, availability, etc., and pay only for what they consume.

In addition to its flexible and fair pricing models, the Cloud Paradigm promises highly
desired features and advantages. The main two features are on-demand resources delivery and
elasticity. Customers can easily purchase new resources from the cloud provider in real time
and scale up horizontally, and simply free leased resources later according to their require-
ments and peak computation times. Furthermore, leasing resources from cloud providers
with high–level expertise on how to manage infrastructures and platforms, guarantees high
rates of reliability and availability. Cloud Computing presents an excellent model of resource
sharing as well. The computing resources delivered over Internet are, usually, running on
virtual machines running side by side on the same physical infrastructure. In this context,
advances in networking and virtualization technologies enabled applications and services
to share infrastructure resources efficiently.

2.2 – Cloud Computing 15

Figure 2.1: Abstraction layers of cloud services

2.2.1 Cloud Service Levels

Cloud Computing services differ in their levels and can be classified into three layers as
shown on Figure 2.1. Cloud clients nowadays can purchase resources of different natures
from various providers. A client can lease infrastructure resources, platform resources, or
software resources, possibly all three types simultaneously.

Infrastructure as a Service (IaaS)

In this type of service, clients outsource the infrastructure and the equipment necessary for
their platform and application deployments. Clients can just rent on-demand the virtual ma-
chines (VMs), and the storage resources they need. The cloud provider hosts, manages, and
maintains pools of infrastructure equipment including storage, computing servers, network-
ing, and other hardware components. The task of managing and maintaining the software
stack is left to the clients. The typical pricing models for such services are Pay-As-You-Go
based. Examples of this type of service include Amazon Elastic Cloud Compute (EC2) [9]
and HP Cloud [74].

Platform as a Service (PaaS)

This type of service includes providing a computing platform, in addition to the implicit
infrastructure that hosts the platform resources. Users rely on the provided platform to
create and/or run their applications. PaaS has been gaining a major popularity in recent
years. Clients export the platform and infrastructures management, with all its complexity,
to a third party that is, generally, better experienced, and better equipped to deal with the

16 Chapter 2 – Big Data Systems and Cloud Computing: A Short Overview

related platform and infrastructure challenges. For instance, any client can deploy Hadoop
MapReduce applications in a few mouse clicks over Amazon Elastic MapReduce service [10].

Software as a Service (SaaS)

Software as a service is the highest level in the abstraction of service layers. The software
services are hosted on the infrastructure of the cloud provider in this model, and are deliv-
ered over a network, Internet typically. With the evolution of the network hardware and the
high bandwidth recently achieved, it is possible for clients to run applications and software
over the Internet that were traditionally run in local computers. Such a type of service is
beneficial to client organizations as it facilitates the administration of applications, allows
better homogeneity of versions between application users, and more importantly provides
global accesses and collaborations.

2.2.2 Cloud Computing Models

Cloud Computing platforms vary in their targeted customers. Therefore, multiple cloud
models were introduced to fit customer ranges.

Public Clouds

Public cloud providers offer the access to services to a wide public over Internet. There-
fore, many individuals and organizations can benefit from the provided services and share
physical resources. This model is very popular, with major Cloud providers such as Ama-
zon, Microsoft, and Google offering reliable and efficient services to a wide range of clients
at arguably low costs. The public cloud paradigm provides many advantages over other
paradigms. In particular, public clouds significantly reduce the financial cost, especially for
new projects, as the bill exclusively includes the amount of resources usage. Moreover, in
this model, the client is offered high on-demand elasticity and scalability, as cloud providers
create the illusion of infinite resources.

Private Clouds

Private clouds are platforms specifically built to serve one organization. The cloud plat-
form might be built internally by the same organization or by a third party. Private cloud
flexibility may be beneficial to organizations as the platform can be built to fit the specific
requirements of that organization. However, the organization is obliged to handle (by it-
self or by delegating to a third party) the infrastructure and the platform management and
maintenance, which can be both complicated and costly. Moreover, private clouds might
suffer from limited scalability and elasticity as the needs grow over the years. One particu-
lar advantage of private clouds is their potential high security and privacy as only customers
belonging to the organization are allowed to access the cloud.

2.2 – Cloud Computing 17

Hybrid Clouds

Hybrid clouds are the combination and federation of two or more clouds of different na-
ture (public and private). IT organizations might require extra resources at peak times. One
solution is to acquire additional resources from public cloud providers. Such phenomenon
is called "Cloud Bursting" and enables cross–clouds scalability. Hybrid clouds offer some
degree of scalability and elasticity. They help organizations to keep critical data and work-
loads in-house. In contrast, the heterogeneity of resources belonging to multiple clouds may
introduce an additional management overhead and performance variability. Although, vir-
tualization techniques achieved sufficient maturity to deal with the heterogeneity of physical
resources. Moreover, the combination of private and public resources may, in some cases,
present a security vulnerability to the private data.

2.2.3 Cloud Computing Platforms

Since the emergence of the Cloud Computing paradigm, many corporations and research
organizations invested resources in building efficient cloud platforms. In this section, we
review a few major and emerging cloud platforms both in industry and academia.

2.2.3.1 Public Cloud Services

Amazon Web Services. Amazon Web Services (AWS) [14] are the Cloud Computing ser-
vices offered by Amazon for their public clients over Internet. The collection of Amazon Web
Services include computing, storage and network services at multiple levels from infrastruc-
tures to platforms. Traditionally, AWS are of IaaS type. However, they evolved over the
years to include PaaS services as well. The main computing service is Amazon Elastic Cloud
Compute (EC2) [9]. EC2 provides virtual machines called instances that may come with a
preferred operating system. Clients can use these instances to deploy a wide variety of ap-
plications with an entire control over the software stack. In addition, AWS provides multiple
storage services. The service to store and manage unstructured data is Amazon Simple Stor-
age Service (S3) [13]. S3 allows users to store their data objects in the cloud in buckets. In
contrast, users that want to attach virtual storage devices to their virtual machines in EC2
can rely on Elastic Block Store (EBS) volumes [8]. In order to support structured data stor-
age, AWS introduced the Amazon DynamoDB [7] service. DynamoDB is a NoSQL storage
service that relies on the Amazon Dynamo [49] system backend and serves clients over the
Internet via a RESTful API.

Microsoft Windows Azure. Windows Azure [95] is a Microsoft cloud service platform.
Windows Azure provides a wide range of PaaS services for its clients both at the infrastruc-
ture level and the platform level. These services include platforms for creating websites,
and platforms for deploying and managing large-scale and scalable applications. Moreover,
within Azure, it is now also possible to lease resources of infrastructure nature (IaaS) over
Internet. Virtual machines that run either a Windows or Linux can be leased. Data manage-
ment services within Azure include a variety of features supporting SQL data management
with Windows SQL server databases and Windows Azure storage for large binary objects
(BLOBs).

18 Chapter 2 – Big Data Systems and Cloud Computing: A Short Overview

Google App Engine. App Engine [67] is Google’s Platform as a Service cloud. It allows
customers to build their web applications in the cloud and run on the same infrastructure
that powers Google applications. App Engine provides tools that automatically and elasti-
cally scale up resource provisioning for deployed applications. The supported programming
languages of the platform are Python, Java, and Go [120]. Data storage and management is
orchestrated by the High Replication Datastore (HRD). HRD supports a hierarchically struc-
tured space where objects are called entities and each entity might have a parent entity

2.2.3.2 Open-Source Toolkits for Managing Cloud Infrastructures

Since the emergence of the Cloud Computing paradigm, various toolkits to manage the
cloud infrastructures were introduced. Tools such as Eucalyptus [57] for building EC2-
compatible private and hybrid clouds, and Nimbus [99] for building scientific clouds gained
major success. In this section, we present two illustrative cloud toolkits: OpenStack that has
become very popular serving in production within many organizations, and OpenNebula
the European cloud toolkit that targets the standardization of cloud querying models.

OpenStack. OpenStack [103] is an open-source Infrastructure as a Service platform for
public and private clouds under Apache 2.0 license. OpenStack aims at providing a mas-
sively scalable and efficient open source cloud solution for corporations, service providers,
small and medium enterprises, and researchers. The OpenStack architecture consists of three
major components. Swift is a store that supports basic objects storage. Cloud environments
in production that are based on OpenStack most often build file system solutions based on
this component. Glance is a component, which provides the storage and management sup-
port for virtual machine images. The computing service is provided by the Nova component.
Similar to Amazon EC2, Nova provides virtual machines (VMs) on-demand supporting full
elasticity and scalability. OpenStack is being widely used in production within many orga-
nizations. Companies like PayPal and Intel, or institutions such as Argonne National Lab-
oratory, US Department of Energy, and San Diego Supercomputer Center are known users of
OpenStack.

OpenNebula. OpenNebula [102] is an open-source cloud computing toolkit. OpenNebula
toolkit orchestrates easy deployments of Infrastructure as a Service nature to form several
types of clouds including private, public, and hybrid clouds. The toolkit fully supports ef-
ficient management of virtualization over computing, storage, and network resources. The
aim of OpenNebula design is to provide a standardization of IaaS clouds with a full support
of interoperability and portability. OpenNebula provides two main cloud interfaces. The
EC2 interface and the OGF OCCI [101] interface. The latter was first proposed as an attempt
toward a standardization of the cloud query model. OpenNebula clients can use either inter-
faces to acquire virtual machines over the network. Moreover, the OCCI interface supports
data access over a file system. In this context, OpenNebula providers can easily integrate
their preferred file system or storage support.

2.3 – Big Data Applications in the Cloud: Challenges and Issues 19

2.3 Big Data Applications in the Cloud: Challenges and Issues

The alarming growth rate of Big Data introduces unprecedented challenges and problems to
IT experts. One of the first and major problems was of infrastructure nature. Companies and
organizations face an overwhelming data tsunami that exceeds their infrastructure capaci-
ties. The emergence of the Cloud Computing paradigm provided a safety net as it provides
an infinite amount of resources on-demand over Internet at a fair price. Moreover, major
cloud vendors that possess the right tools and experience to deal with Big Data, provide
storage solutions and Big Data platforms to their clients. Henceforth, cloud clients delegate
a major part of Big Data management complexity to the cloud providers. This significantly
reduces the cost as the management of Big Data at home requires large investments in in-
frastructures, platforms and human resources that many organizations cannot afford. In
this context, Amazon Web Services (AWS) for instance provide their clients with mature in-
frastructures and tools to deal with Big Data from day one. It is fairly easy nowadays, to
store one’s data on Amazon S3 or Amazon DynamoDB. Moreover, Amazon provides Elas-
tic MapReduce service that allows clients to run Hadoop applications on their data without
worrying about the deployment nor the management of the platform.

2.3.1 Big Data Challenges

Big Data challenges are inherited from problems that storage and database experts have been
facing for long years. They learnt how to deal with them at smaller scales. However, early
methods fail, in most, to meet nowadays enormous scales. In the following, we present main
challenges of the Big Data community and how organizations tend to deal with them in the
cloud.

Data Durability

Data durability is a primary concern for Big Data applications. Data loss may have various
consequences from disasters with critical applications, to merely small misfunctions. Over
the years, storage architects proposed innovative ways to insure data durability relying on a
wide range of techniques that include replication and log-based mechanisms. One approach
that is very popular at the level of disk storage is RAID (Redundant Array of Independent
Disks) [105]. RAID techniques combine multiple disk drives with multiple data distribution
algorithms to ensure data durability. However, such a technology fails to meet the level of
actual cloud scales [108]. Intel for instance, proposes to replace these techniques with erasure
code mechanisms [108]. Cloud storage systems such as Yahoo! PNUTS [44] and Amazon Dy-
namo [49] on the other hand rely (at a higher level) on hinted writes (based on logs) and geo-
graphical replication to ensure data durability. Glacier [11] is an Amazon service to provide
long-term storage. Amazon Glacier promises 99.999999999 th percentile of data durability.
Its architecture relies on a huge amount of tape libraries that are geographically replicated.
However, Amazon Glacier is not an online system as retrieving data requires hours.

20 Chapter 2 – Big Data Systems and Cloud Computing: A Short Overview

Fast Access

The growth of data in volume, variety, and velocity is associated with a growing need for
high performance and fast access. To address this challenge, given the enormous volumes
of data, various techniques are put to use by cloud providers and Big Data corporations.
Technological advances in Flash Memory and Solid-State Drives (SSD) reduce the access
time by about 8 times [71] compared to classical hard drives. At the software level, novel
storage system architectures rely on replication in order to provide faster access to local
copies of data. In particular, Optimistic Replication [110] provides much faster access in the
case of geographical distribution as data can be accessed directly from geographical close
replica while asynchronously propagated to other replicas. Another technique that enables
faster access is enabling in-memory computation within distributed storage systems. This
enables storage users to access most of their data in memory (RAM) instead of disks. Systems
such as Google BigTable [40] and Cassandra [85] rely on in-memory data structures called
memtables, that provide fast access directly from memory for a large portion of data.

Data Availability

Data is said to be available if all (or most) access requests result in a successful response [66,
35]. Availability is a critical requirement for many Big Data applications. Web services such
as Web shops require a high degree of availability as customers must always get a response
for their requests to avoid financial losses. For instance, the cost of a single hour of down-
time for a system handling credit card sale authorizations has been estimated to be between
$ 2.2 M–$ 3.1 M [106]. In this context, novel architectures that guarantee high levels of avail-
ability at a wide scale were introduced. The Amazon.com e-commerce platform [15], along
with many of Amazon Web Services, relies on Amazon Dynamo storage [49] to achieve
extremely high levels of availability. Amazon Dynamo forfeits few of the ACID strong se-
mantics in order to offer a Service Level Agreement (SLA) guaranteeing that a response will
be provided within 300 ms for 99 % for a peak client load of 500 requests per second [49].

Failure Tolerance & Disaster Recovery

Cloud storage infrastructures, commonly, consist of commodity hardware. Therefore, com-
ponents failures are the norm rather than the exception. One of the main challenges for Big
Data platforms and infrastructures is to keep operational in the presence of one or more
failing components. Redundancy and replication are known ways to handle fault tolerance.
Solutions such as RAID (Redundant Array of Independent Disks) are widely used. However,
the scalability of these techniques is a major issue. One popular solution that scales to wide
areas level is Optimistic asynchronous Replication [110]. This technique is an alternative to
synchronous replication, that enables scalable performance while providing fault tolerance.
Furthermore, replicating data at multiple geographical areas and insuring its durability pro-
vides disaster recovery capacity. Nowadays, it is fairly easy and cheap to replicate data
across multiple continents within major cloud providers. In this context, systems are able
to recover even with the compromise of most or all the data centers in a geographical area
subject to a sinister.

2.3 – Big Data Applications in the Cloud: Challenges and Issues 21

2.3.2 Our Focus: Replication and Consistency

Replication. Replication is a very important feature for Big Data. It consists in storing
multiple copies of the same data on multiple storage devices or storage nodes. In the era
of planet-scale services and applications, replication is mandatory to address the Big Data
challenges. It provides the necessary means to insure data durability, to enable a fast ac-
cess through local replicas, to increase the level of data availability, and to guarantee fault
tolerance. Traditionally, data propagation from one replica to the others is performed in a
synchronous way. Fundamentally, for each update or write, data are immediately propa-
gated to other replicas before returning operation success. However, this approach showed
its limitation with today’s growing scales, as it fails to provide scalable performance, partic-
ularly at wide scale replication. The need for synchronization coupled with high network
latencies badly impacts the operation latencies as reads and writes must await responses
from all replicas no matter their locations before returning a success. Optimistic (or lazy)
Replication [110, 84, 83] was proposed to overcome this particular problem. Data propaga-
tion to other replicas (or a subset of replicas) is performed lazily and delayed to a future
time. In this case, update and write operations are allowed to return a success after data
are committed to the local replica whereas they are yet to be fully propagated. This situa-
tion may lead to a temporary replica divergence. Meanwhile, Optimistic Replication allows
better performance. The latency of read and write operations is not affected by the net-
work latency. Moreover, the throughput of the storage system is not slowed down by the
extra traffic generated by an immediate data propagation to other replicas. However, this
approach presents a major, complex issue: that of data consistency.

Consistency. Insuring data consistency across replicas is a major issue. Traditional
databases (RDBMS) and file systems are bounded by rigorous semantics (ACID for RDBMS
and POSIX for filesystems) where a strong data consistency is one of the primary require-
ments. Strong consistency is, usually, achieved relying on synchronous replication and guar-
antees that replicas of the same data are always perceived in the same state by the users.
Within early systems scales, this was not an issue. However, within Big Data systems and ap-
plications, strong consistency may be too costly introducing a heavy performance overhead
and reducing data availability. To overcome such a limitation, eventual consistency [124,
115, 119] has become very popular in the recent years. It may allow some temporal incon-
sistency at some points in time, but insures that all replicas will converge to a consistent
state in the future. This is acceptable for many modern Big Data applications, in particu-
lar a wide range of Web applications for which update conflicts are not common and easily
solvable. Moreover, by relying on Optimistic Replication, eventual consistency provides
better performance and higher availability. In this context, various tradeoffs regarding con-
sistency emerge. They include the Consistency-Perfroamnce tradeoff and the Consistency-
Availability tradeoff among others. As a result, consistency management is crucial within
storage systems and their capacity to deal with Big Data challenges. In the next chapter, we
survey consistency management in the cloud. We present consistency tradeoffs, consistency
models, their implementation in modern cloud storage, and adaptive consistency manage-
ment approaches.

22 Chapter 2 – Big Data Systems and Cloud Computing: A Short Overview

2.4 Summary

The explosion of data volumes in recent years has revolutionized the way IT organizations
manage their hardware and software resources. Henceforth, novel computing paradigms
and data processing platforms were introduced. To cope with the challenges of the emerg-
ing Big Data phenomenon, a few infrastructure models such as Cluster, Grid, and Cloud
Computing provide the necessary means to efficiently host, transfer and process data. In
particular, the Cloud Computing paradigm offers the on-demand flexibility and elasticity of
resource leasing that Big Data platforms critically need. It introduces various models and
service levels to cope with the variety of Big Data applications. Moreover, in order to deal
with data availability, data durability, fast access, and fault tolerance challenges, replication
is an important feature in the cloud. However, replication arises the issue of data consistency
across replicas. In this context, we highlighted the consistency management issue, and its
heavy impact and consequences on dealing with Big Data challenges. In the next chapter,
we discuss in further details the importance of consistency management, the related trade-
offs and the state of the art of consistency model implementations within modern storage
systems.

23

Chapter 3
Consistency Management in the Cloud

Contents
3.1 The CAP theorem . 24
3.2 Consistency Models . 26

3.2.1 Strong Consistency . 27
3.2.2 Weak Consistency . 27
3.2.3 Eventual Consistency . 28
3.2.4 Causal Consistency . 29
3.2.5 Timeline Consistency . 30
3.2.6 Discussion . 31

3.3 Cloud Storage Systems . 32
3.3.1 Amazon Dynamo . 32
3.3.2 Cassandra . 33
3.3.3 Yahoo! PNUTS . 34
3.3.4 Google Spanner . 35
3.3.5 Discussion . 37

3.4 Adaptive Consistency . 38
3.4.1 RedBlue Consistency . 38
3.4.2 Consistency Rationing . 40

3.5 Summary . 41

This chapter is mainly extracted from the book chapter: Consistency
Management in Cloud Storage Systems Houssem-Eddine Chihoub, Shadi
Ibrahim, Gabriel Antoniu, Maria S. Pérez. In the book Advances in data
processing techniques in the era of Big Data, to be published by CRC PRESS,
end of 2013. Editors: Sherif Sakr and Mohamed Medhat Gaber.

24 Chapter 3 – Consistency Management in the Cloud

REPLICATION is a key feature for Big Data applications in the cloud in order to cope with
Big Data related challenges. In this context, replication is used for fast accesses, high
levels of availability, data durability, fault tolerance, and disaster recovery. However,

as highlighted in the previous chapter, replication raises the issue of data consistency across
replicas. Hereafter, in this chapter, we address this issue of consistency management in
cloud storage systems. We survey consistency models and their impacts on storage system
features in the context of Cloud Computing. First, we highlight the different tradeoffs related
to consistency as introduced by the CAP theorem and beyond. Then, we present various
consistency models introduced over the years with their provided guarantees. Thereafter,
we discuss the implementation of consistency mechanisms within some of the most popular
cloud storage systems. In order to conclude this chapter, we present academic approaches
that tend to manage consistency dynamically at application runtime in order to guarantee
consistency when needed and enhance performance when possible.

3.1 The CAP theorem

In his keynote speech [35], Brewer introduced what is known as the CAP theorem. This the-
orem states that at most only two out of the three following properties can be achieved
simultaneously within a distributed system: Consistency, Availability and Partition Tolerance.
The theorem was later proven by Gilbert and Lynch [66]. The three properties are important
for most distributed applications such as web applications. However, within the CAP theo-
rem, one property needs to be forfeited, thus introducing several tradeoffs. In order to better
understand these tradeoffs, we will first highlight the three properties and their importance
in distributed systems.

Consistency: The consistency property guarantees that an operation or a transaction is
performed atomically and leaves the systems in a consistent state, or fails instead. This
is equivalent to guaranteeing both the atomicity of operations and the consistency of data
properties (AC) of the ACID (Atomicity, Consistency, Isolation and Durability) semantics in
relational database management systems (RDBMs).

Availability: In their CAP theorem proof [66], the authors define a distributed storage
system as continuously available if every request received by a non-failing node must re-
sult in a response. On the other hand, when introducing the original CAP theorem, Brewer
qualified a system to be available if almost all requests receive a response [35]. This is the
case of nowadays SLAs (Service Level Agreement) proposed by Cloud Computing vendors
insuring availability rates that exceeds 99.99% of operations.

Partition Tolerance: In a system that is partition tolerant, the network is allowed to loose
messages between nodes from different components (data centers for instance). When a
network partition appears, the network communication between two components (racks,
data centers etc.) is off and all the messages are lost. Since replicas may be spread over
different partitions in such a case, this property has a direct impact on both consistency and
availability.

3.1 – The CAP theorem 25

User2 User1

Propagate
update

D1

D1

D1

N
et

w
ork

 P
ar

tit
io
n

Update D1

If user2 request to read Data D1
after User1 update: either he will

read stale data, thus violating
consistency, or wait until the

update is successfully propagated
to R3 thus violating availability.

Datacenter 1
Datacenter 2

R1

R2

R3

Figure 3.1: Consistency vs. Availability in Geo-replicated Systems

The implications of the CAP theorem introduced challenging and fundamental tradeoffs
for distributed systems and service designers. Systems that are designed to be deployed on
single entities, such as an RDBM, aim to provide both availability and consistency properties
since partitions are not an issue. However for distributed systems that rely on networking,
such as geo-replicated systems, partition tolerance is a must for a big majority of them. This
in turn introduces, among other tradeoffs derived from the CAP theorem, the Consistency
vs. Availability as a major tradeoff. As shown in Figure 3.1, user requests can be served
from different replicas in the system. If partitions occur, an update on one replica cannot
be propagated to other replicas on different partitions. Therefore, those replicas could be
made either available to the clients, thus violating consistency, or otherwise, made unavailable
until they converge to a consistent state, which can happen after recovering from the network
partition.

Beyond the CAP Theorem

The proposal of the CAP theorem a few years ago had a huge impact on the design of dis-
tributed systems and services. Moreover, the ever-growing volume of data along with the
huge expansion of distributed systems scales makes the implications of the CAP theorem of
even higher importance.

Twelve years after the introduction of his CAP theorem, Brewer still ponders its impli-
cations [34]. He estimates that the theorem achieved its purpose in the past in the way it
brought the community’s attention to the related design challenges. On the other hand, he
judges some interpretations of the implications as misleading, in particular, the two–out–
of–three tradeoff property. The general belief is that the partition tolerance property P is
insurmountable for wide-area systems. This often leads designers to completely forfeit con-
sistency C or availability A for each other. Given that partitions are rare. Brewer states that

26 Chapter 3 – Consistency Management in the Cloud

the modern goal of the CAP theorem should be to maximize combinations of C and A. In
addition, system designers should develop mechanisms that detect the start of partitions,
enter an explicit partition mode with potential limitations of some operations, and finally
initiate partition recovery when communication is restored.

Abadi [3] states as well that the CAP theorem was misunderstood. CAP tradeoffs should
be considered under network failures. In particular, the Consistency-Availability tradeoff in
CAP is for when partitions appear. The theorem property P implies that a system is partition-
tolerant and more importantly, is enduring a partition. Therefore, and since partitions are
rare, designers should consider other tradeoffs that are, arguably, more important. A trade-
off that is more influential, is the latency-consistency tradeoff. Insuring strong consistency
in distributed systems requires a synchronized replication process where replicas belong
to remote nodes that communicate through a network connection. Subsequently, reads and
updates may be costly in terms of latency. This tradeoff is CAP-Independent and exists perma-
nently. Moreover, Abadi makes a connection between latency (response time of an operation)
and availability. When latency is higher than a specific timeout the system becomes unavail-
able. Similarly, the system is available if the latency is smaller than this timeout. However,
the system can be available and exhibit high latency nonetheless. For these reasons, system
designers should consider this additional tradeoff along with CAP. Abadi proposes to unify
the two in a unified formulation called PACELC where PAC refers to the A (availability) and
C (consistency) tradeoff if a partition P exists, and ELC refers to else: (E), in the absence of
partitions, the latency L and consistency C tradeoff should be considered.

After they proved the CAP theorem, Gilbert and Lynch reexamined the theorem properties
and its implications [65]. The tradeoff within CAP is another example of the more general
tradeoff between safety and liveness in unreliable systems. Consistency can be seen as a safety
property for which every response to client requests is correct. In contrast, availability is a
liveness property that implies that every client request would eventually receive a response.
Hence, viewing CAP in the broader context of safety-liveness tradeoffs provides insight into
the feasible design space for distributed systems [65]. Therefore, they reformulate the CAP
theorem as follows: “CAP states that any protocol implementing an atomic read/write register can-
not guarantee both safety and liveness in a system prone to partitions”. As a result, the practical
implications dictate that designers opt for best-effort availability, thus guaranteeing consis-
tency, and best-effort consistency for systems that must guarantee availability. A pragmatic
way to handle the tradeoff is by balancing the consistency-availability tradeoff in an adap-
tive manner. We will further explore this idea in Section 3.4.

3.2 Consistency Models

In this section, we present multiple consistency models. We particularly, focus on strong
consistency and eventual consistency. The concepts presented within these two models are
essential to the following chapters. For every model, we show its specified guarantees to
provide consistency at the system side. Eventually, and considering the strength level of
these guarantees, we discuss the potential solutions to manage updates conflict situations
and further guarantees at the client side in some cases. The consistency models are then
summarized in Table 3.1.

3.2 – Consistency Models 27

3.2.1 Strong Consistency

In traditional distributed storage and database systems, the instinctive and correct way to
handle replica consistency was to insure a strong consistency state of all replicas in the sys-
tem at all time. For example, the RDBMs were based on ACID semantics. These semantics
are well defined and insure a strong consistency behavior of the RDBM based on the atom-
icity and consistency properties. Similarly, the POSIX standard for file systems implies that
data replicated in the system should always be consistent. Strong consistency guarantees
that all replicas must be in a consistent state immediately after an update, before it returns a
success. In a perfect world, such semantics and a strong consistency model are the proper-
ties that every storage system should adopt. However, insuring strong consistency requires
mechanisms that are very costly in terms of performance and availability and limit the sys-
tem scalability. This was not an issue in the early years of distributed storage systems as the
scale and the performance needed at the time were not as important. However, in the era
of Big Data and Cloud Computing, this consistency model can be penalizing, in particular if
such a strong consistency is actually not required by the applications.

Several models and correctness conditions to insure strong data consistency were pro-
posed over the years. Two of the most common models to provide strong consistency guar-
antees are serializability [30] and linearizability [73] that introduce specific constraints on the
ordering of the access operations execution.

Given the strength of strong consistency models, no further guarantees are required at
the client side. All situations that lead to updates conflict or inconsistency are efficiently
handled at the system-side (with eventually performance overhead).

3.2.2 Weak Consistency

For historical purposes, we present the weak consistency model. Weak Consistency was one
of the first intuitions that have aimed at relaxing consistency guarantees. The implemen-
tation of strong consistency models imposes, in many cases, limitations in both system’s
design choices and application performance. To overcome these limitations, Dubois et al. [53]
first introduced the weak ordering model that relaxes the strong guarantees for enhanced
performance.

System-side guarantees

Data accesses (read and write operations) are considered as weakly ordered if they satisfy
the following three conditions:

• All accesses to a shared synchronization variables are strongly (sequentially) ordered.
All processes perceive the same order of operations.

• Data accesses to a synchronization variable are not issued by processors before all pre-
vious accesses have been globally performed.

• A global data access is not allowed by processors until a previous access to synchro-
nization variable is globally performed.

28 Chapter 3 – Consistency Management in the Cloud

From these three conditions, the order of read and write operations, outside critical sec-
tions (synchronization variables), can be seen in different orders by different processes as
long as they don’t violate the aforementioned conditions. However, in [112] [5], it has been
argued that not all the three conditions are necessary to reach the intuitive goals of weak or-
dering. Numerous variation models have been proposed since. Bisiani et al. [32] proposed an
implementation of weak consistency on distributed memory systems. Timestamps are used
to achieve a weak ordering of the operations. A synchronization operation is completed only
after all previous operations in the systems reach a completion state.

Client-side guarantees

The following client-side models are weak consistency models, but provide further guaran-
tees to the client.

Read-your-writes. This model guarantees that a process that commits an update will always
be able to see its most recent committed update when a read is issued. This might be
an important consistency property to provide with weakly ordered systems for a large
class of applications. As will be seen further in this section, this is a special case of
causal consistency.

Session consistency. Read-your-writes consistency is guaranteed in the context of a session
(which is a sequence of accesses to data, usually with an explicit beginning and end-
ing). As long as the users access data during the same session, they are guaranteed to
access their latest updates. However, the read-your-writes property is not guaranteed
to be spanned over different sessions.

Monotonic reads. A process should never read a data item value older than what it has read
before. This consistency guarantees that a process’s successive reads return always the
same value or a more recent one than the previous read.

Monotonic writes. This property guarantees the serialization of the writes by one process.
A write operation on a data object or item must be completed before any successive
writes by the same process. Systems that do not guarantee this property are notori-
ously hard to program [124].

3.2.3 Eventual Consistency

In this part we present the eventual consistency model. This model has become very popular
in the recent years and is at the center of this Ph.D contributions.

In a replicated storage system, the consistency level defines the behavior of divergence
of replicas of logical objects in the presence of updates [115]. Eventual consistency [124, 115,
119] is the weakest consistency level that guarantees convergence. In the absence of updates,
data in all replicas will gradually and eventually become consistent.

System-side guarantees

Eventual consistency ensures the convergence of all replicas in systems that implement lazy,
update-anywhere or optimistic replication strategies [110]. For such systems, updates can be

3.2 – Consistency Models 29

performed on any replica hosted on different nodes. The update propagation is done in a
lazy fashion. Moreover, this update propagation process may encounter even more delays
considering cases where network latency is of a high order such as for geo-replication. Even-
tual consistency is ensured through mechanisms that will guarantee the propagation process
will successfully terminate at a future (maybe unknown) time. Furthermore, Vogels [124]
judges that, if no failures occur, the size of the inconsistency window can be determined
based on factors such as communication delays, the load on the system, and the number of
replicas in the system.

Eventual consistency by the mean of lazy asynchronous replication may allow better per-
formance and faster accesses to data. Every client can read data from local replicas located in
a geographically close datacenter. However, if an update is performed on one of the replicas
and is yet to be propagated to others because of the asynchronous replication mechanism, a
client reading from a distant replica may read stale data.

Further client–side guarantees, as introduced with weak consistency, might be provided
at the level of client processes in order to cope with the various forms of undesirable incon-
sistency for user’ applications.

Handling of update conflicts

Eventual consistency is most suitable for a given class of applications, for which update con-
flicts are rare and stale data are, in most, harmless. In contrast, the management of update
conflicts may present serious problems for other types of applications. In [119], two exam-
ples that illustrate the typical use case and show the potential gains with this consistency
model are presented. The worldwide domain name system (DNS) is a perfect example of a
system for which eventual consistency is the best fit. The DNS namespace is partitioned into
domains where each domain is assigned to a naming authority. This is an entity that will be
responsible for this domain and is the only one that can update it. This scheme eliminates
the update-update conflict. Therefore, only the read-update conflict needs to be handled. As
updates are less frequent, in order to maintain system availability and fast accesses for users
read operations, lazy replication is the best–fit solution. Another example is the World Wide
Web. In general, each web page is updated by a single authority, its Webmaster. This also
avoids any update-update conflict. However, in order to improve performance and lower
read access latency, browsers and Web proxies are often configured to keep a fetched page in
a local cache for future requests. As a result, a stale out-of-date page may be read. However,
many users find this inconsistency acceptable (to a certain degree) [119].

Within many applications, update conflicts may not need a strict ordering between them
but can be handled based on the application semantics instead. A famous example of this
case is the Amazon user shop cart application where updates can be easily merged no matter
their order of occurrence. In this context, eventually consistent systems provide, generally,
mechanisms to handle update conflicts.

3.2.4 Causal Consistency

Causal consistency is another model that relaxes strong consistency ordering as to reduce the
performance overhead. It utilizes the causal relation between operations in order to provide
minimum causality guarantees.

30 Chapter 3 – Consistency Management in the Cloud

System-side guarantees

Causal consistency is a consistency model where a sequential ordering is always preserved
only between operations that have causal relation. In [6][91], two operations a and b have a
potential causality if one of the two following conditions are met: a and b are executed in a
single thread and one operation execution precedes the other in time; or if b reads a value that
is written by a. Moreover, a causality relation is transitive. If a and b have a causal relation,
b and c have a causal relation as well, then a and c have a causal relation. Operations that
execute concurrently do not share a causality relation. Therefore, causal consistency does
not order concurrent operations.

Handling of update conflicts

In [91], a model that combines causal consistency and convergent conflict handling is pre-
sented and called causal+. Since concurrent operations are not ordered by causal consistency,
two writes to the same key or data object would lead to a concurrent update conflict where
different data changes may be performed at the level of at least two different replicas. The
main challenge for such situations is to ensure replica convergence to the same state. In
contrast to eventual consistency, the update conflict is a direct result of performing updates
concurrently. With eventual consistency however, a conflict may occur with two updates to
the same data but not at the same time. The convergent conflict handling aims at handling
all the replicas in the same manner using a handler function in order to ensure that all repli-
cas will be in the same state at a latter time. To reach convergence, all conflicting replicas
should consent to an agreement. Various conflict handling methods were proposed such as
last-writer-wins rule [121], through user intervention, or using versioning mechanisms that
allow merging of different versions in one as in Amazon’s eventually consistent Dynamo
storage system. In this context, it has been shown that implementing causal consistency
with last-writer-wins rule to handle updates conflicts at wide scales provides performance
comparable to that of eventually consistent systems [92].

3.2.5 Timeline Consistency

The timeline consistency model was proposed specifically for the design of Yahoo!
PNUTS [44], the storage system designed for Yahoo! Web applications. This consistency
model was proposed to overcome the inefficiency of serializability of transactions at massive
scales and geo-replication. Moreover, it aims to limit the weaknesses of eventual consistency.

System-side guarantees

Transaction serializability was avoided as a design choice within Yahoo! PNUTS. This was
mainly due to the observation that web applications typically manipulate one record at a
time. Therefore, a per-record timeline consistency was introduced. Unlike eventual consis-
tency, where operations order can vary from one replica to another, all replicas of a record
perform the operations in the same “correct" order. For instance, if two concurrent updates
are performed, all replicas will execute them in the same order and thereby avoid inconsis-
tencies. Nevertheless, data propagation to replicas is done lazily, which makes the conver-

3.2 – Consistency Models 31

Table 3.1: Consistency Models
Consistency Model Guarantees

Strong Consistency serializability Serial order of concurrent executions of a set of serializa-
tion units (set of operations).

linearizability Global total order of operations (single operations), ev-
ery operation is perceived instantaneously.

Weak Consistency Read-your-
writes

A process always sees its latest update on read opera-
tions.

Session con-
sistency

Read-your-writes consistency is guaranteed only within
a session.

Monotonic
reads

Successive reads must always return the same or a more
recent value than a previous read.

Monotonic
writes

A write operation must always complete before any suc-
cessive writes.

Causal Consistency Total ordering between operations that have a causal re-
lation.

Eventual Consistency In the absence of updates, all replicas will gradually and
eventually become consistent.

Timeline Consistency All replicas perform operations on one record in the
same “correct order".

gence of all replicas eventual. This allows clients to read data from local replicas that may be
in a stale version. In order to preserve the order of operations for a given record, one replica
is designated dynamically as a master replica for the record that handles all the updates.

This model avoids major problems related to update conflicts, that eventually–consistent
systems might suffer from, since update operations are all executed at the same order every-
where. Moreover, the model still provides some flexibility to allow read update conflicts and
therefore reducing performance overhead caused by synchronization. However, eventual
consistency still outperforms timeline consistency by avoiding updates synchronization.

3.2.6 Discussion

Table 3.1 summarizes the presented consistency models. These models provide different lev-
els of guarantees and are designed for different classes of applications and use cases. Strong
models such as linearizability and serializability provide the strongest forms of consistency
that eliminates operations conflict situations. However, this comes at the cost of performance
overhead due to the application of expensive necessary mechanisms in order to deliver such
guarantees. In this context, the weak consistency models were introduced to relax the strong
guarantees for applications that do not require the strongest forms of consistency. As a result,
the performance overhead is significantly reduced. In order to deal with weak guarantees,
additional operation ordering requirements can be imposed on the client level as to cope
with the consistency needs. In the context of relaxing the strong consistency guarantees,
three models have become very popular in recent years. They differ mainly in the way they
handle conflicts. Eventual consistency is the weakest consistency model that guarantees the
convergence of replicas. In this model, update conflicts resolution is postponed to a future
time favoring availability of data. Causal consistency does not allow the violation of causal

32 Chapter 3 – Consistency Management in the Cloud

relations between updates. Therefore, only concurrent simultaneous updates can lead to the
conflict situations. As opposed to these two models, timeline consistency orders updates de-
terministically and does not allow updates conflicts. Data propagation is however, eventual
and thus, read-update conflicts may occur.

While insuring strong consistency comes at the cost of performance overhead and de-
creased availability, the weaker consistency models might allow far too much inconsistency,
in particular eventual consistency. Moreover, for dynamic workloads—which are common
for applications running in the cloud such as Web shops that exhibit high load variability—,
both the consistency and performance needs might be variable and can change overtime.
Therefore, one static model (that can guarantee either strong consistency or weak consis-
tency) is not suitable to satisfy the varying requirements of this type of applications. In this
context, the need for adaptive models strongly imposes itself.

3.3 Cloud Storage Systems

To illustrate the previously introduced models with some practical examples of systems,
in this section we describe some state-of-the-art cloud storage systems. These systems are
adopted by the big cloud vendors, such as Amazon Dynamo, Apache Cassandra, Yahoo!
PNUTS, and Google Spanner. We focus on Amazon Dynamo, and Cassandra in particular
as two illustrative systems that implement eventual consistency. Moreover, Cassandra is
the system used for most of our experimental evaluations in the following chapters. In the
following, cloud storage systems are presented by introducing their targeted applications
and use cases, their data models, their design principles and adopted consistency, and their
APIs. We then, give an overview of more systems and their real-life applications and use-
cases in Table 3.2.

3.3.1 Amazon Dynamo

Amazon Dynamo [49] is a storage system designed by Amazon engineers to fit the require-
ments of their web services. Dynamo provides the storage backend for the highly available
worldwide Amazon.com e-commerce platform and overcomes the inefficiency of RDBMs
for this type of applications. RDBMs fail over meeting the availability and the response
time required by Amazon services due to the adoption of ACID semantics. Reliability and
scaling requirements within this platform services are high. Moreover, availability is very
important, as the increase of latencies by only minimal fractions can cause financial losses.
Dynamo provides a flexible design where services may control availability, consistency, cost-
effectiveness and performance tradeoffs. Dynamo’s data model relies on a simple key/value
scheme. Since the targeted applications and services within Amazon do not require complex
querying models, a record-based or key-based queries are considered both enough in term
of requirements and efficient in terms of performance scaling.

Dynamo’s design relies on a consistent hashing-based partitioning scheme [80]. In the
implemented scheme, the resulting range or space of a hash function is considered as a ring.
Every member of the ring is a virtual node (host) where a physical node may be responsible
for one or more virtual nodes. The introduction of virtual nodes, instead of using fixed phys-
ical nodes on the ring, is a choice that provides better availability and load balancing under

3.3 – Cloud Storage Systems 33

failures. Each data item can be assigned to a node on the ring based on its key. The hashed
value of the key determines its position on the ring. Then, data is assigned to the closest
node on the ring clockwise. Moreover, data is replicated on the successive K − 1 nodes for
a given replication factor K, avoiding virtual nodes that belong to the same physical nodes.
All the nodes on Dynamo are considered equal and are able to compute the reference list for
any given key. The reference list is the list of nodes that store a copy of the data referenced by
that key.

Dynamo is an eventually–consistent system. Updates are asynchronously propagated
to replicas. As data is usually available while updates are being propagated, clients may
perform updates on older versions of data for which the last updates have not been com-
mitted yet. As a result, the system may suffer from update conflicts. To deal with these
situations, Dynamo relies on data versioning. Every updated replica is assigned a new im-
mutable version. The conflicting versions of data resulting from concurrent updates may be
solved at a latter time. This allows the system to be always available and fast to respond to
client requests. Versions that share a causal relation are easy to solve by the system based
on syntactic reconciliation. However, a difficulty arises with versions branching. This of-
ten happens in the presence of failures combined with concurrent updates and results in
conflicting versions of data. The reconciliation in this case is left to the client rather than to
the system because the latter lacks the semantic context. The reconciliation is performed by
collapsing the multiple data versions into one (semantic reconciliation). A simple example
is the case of the shopping cart application. This application chooses to merge the diverging
versions as a reconciliation strategy.

Clients can interact with dynamo through a flexible API that provides various consis-
tency configurations. Replica consistency is handled by a quorum-like system. In a system
that maintains N replicas, R is the minimum number of nodes (replicas) that must partici-
pate in the read operation, and W is the minimum number of nodes that must participate in
the write operation are configured on a per operation basis and are of high importance. By
setting these two parameters, one can define the tradeoff between consistency and latency. A
configuration that provides R + W > N is a quorum-like setting. This configuration insures
that the last up-to-date replica is included in the quorum and thus in the response. However,
the operation latencies are as small as the longest replica response time. In a configuration
where R + W < N, clients may be exposed to stale versions of data.

3.3.2 Cassandra

Many web services and social networks are data-intensive and deal with the problem of
data deluge. The Facebook social networking platform is the largest networking platform
serving hundred millions of users at peak times and having no less than 900 million active
users [59]. Therefore, and in order to keep users satisfied within such services, an efficient
Big Data management that guarantees high availability, performance, and reliability is re-
quired. Moreover, a storage system that fulfills these needs must be able to elastically scale
out to meet the continuous growth of the data-intensive platform. Cassandra [85] is a highly
available, highly scalable, distributed storage system that was first built within Facebook. It
was designed for managing large objects of structured data spread over a large amount of
commodity hardware located in different datacenters worldwide.

The design of Cassandra was highly inspired by that of two other distributed storage

34 Chapter 3 – Consistency Management in the Cloud

systems. Implementation choices and consistency management are very similar to the ones
of Amazon Dynamo (except for in-memory management) while its data model is derived
from that of Google BigTable [40] model. Data are stored in tables and indexed by row
keys. Moreover, this model is column family based. The column keys are grouped into sets
called column families. For each table, column families are defined and column keys within
a column family can be created dynamically. Every operation on a single row key is atomic
per replica without considering which columns are accessed. Such a data model provides
great abilities for structured large data, as it offers a more flexible yet efficient data access.
Moreover, it provides an efficient dynamic memory management (due to column families
and their related data structures). Like BigTable, Cassandra keeps data in-memory in small
tables called memtables. When a memtable size grows over a given threshold, it is considered
as full and data is flushed into an sstable that will be dumped to the disk.

The Cassandra partitioning scheme is based on consistent hashing. Unlike Dynamo,
which uses virtual nodes to overcome the non-uniformity of load distribution, every node
on the ring is a physical host. Therefore, and in order to guarantee uniform load distribu-
tion, Cassandra uses the same technique as in [116], where lightly–loaded nodes move on
the ring. Replication in Cassandra is performed in the same manner as in Dynamo. More-
over, Cassandra implements few replication strategies that consider the system topology.
Therefore, strategies that are Rack UnAware, Rack Aware, and Datacenter Aware are provided.
For the two latter strategies, Cassandra implements algorithms in Zookeeper [75] in order to
compute the reference list for a given key. This list is cached locally at the level of every node
as to preserve the zero-hop property of the system.

Similar to Dynamo, Cassandra provides a flexible API to clients. In this context, various
consistency levels [4] are proposed per operation. A write of consistency level One implies
that data has to be written to the commit log and memory table of at least one replica before
returning a success. Moreover, as shown in Figure 3.2, a read operation with consistency
level All (strong consistency) implies that the read operation must wait for all the replicas to
reply and insures that all replicas are consistent in order to return the data to the client. In
contrast, in a read consistency of level of Quorum (Quorum is computed as: b replication f actor

2 +
1c), two out of the three (when the replication factor is set to three) replicas are contacted
to fulfill the read request, and the replica with the most recent version would return the
requested data. In the background, a read repair will be issued to the third replica and will
check for consistency with the first two. If inconsistency occurs, an asynchronous process
will be launched to repair the stale nodes at a latter time.

3.3.3 Yahoo! PNUTS

PNUTS [44] is a massively parallel geographically distributed storage system. Its main pur-
pose is to host and serve data for Yahoo! Web applications. Its design and implementation
were driven by Yahoo!’s requirements for a data management platform that provides scala-
bility, fast response, reliability, and high availability in different geographical areas. PNUTS
relies on a novel relaxed consistency model to cope with availability and fault-tolerance re-
quirements at large scale. In this context, it provides the user with a simplified relational
model. Data is stored in a set of tables of records with multiple attributes. An additional
data type provided to the users is the “blob" type. A blob encapsulates arbitrary data struc-
tures (not necessarily large objects) inside records.

3.3 – Cloud Storage Systems 35

Issue

read request

6

5

4

3

2

1
R1

Client

R3

R2

3. Check requested data

1.
2.

Send direct

read request to quorum

replicas (1, 2) and wait

their response

2.

Background read

repair request

Upon arrival of R 1 and R2, if they are consistent then 4

If they are not consistent and R 1 has the most recent data then 4 and 4a

Upon arrival of R 3, if it is not consistent with the most recent data then another 4.a

4. Response

with R1

4a. Issue a write to

the out-of-date

replicas

2a.

Issue

read request

6

5

4

3

2

1
R1

Client

R3

R2

3. Check requested data

1.
2.

Send the request

to all replicas and

wait their response

2

2

If (R1, R2 and R3 are consistent) then 6,

while if R3 is out of data then
4 5 6

5. Ack

6. Response

with R1

4. Issue

a write to the

out-of-date

replicas

Strong Consistency in Cassandra Eventual Consistency in Cassandra

Figure 3.2: Consistency in Cassandra

PNUTS divides the system into a set of regions. Regions are typically, but not necessarily,
geographically distributed. Every region consists of a set of storage units, a tablet controller
and a set of routers. Data tables are decomposed horizontally into smaller data structures
called tablets that are stored across storage units (servers) within multiple regions. On the
other hand, the routers functionality is to locate data within tablets and storage units based
on a mapping computed and provided by the tablet controller. PNUTS introduces the novel
consistency model of per-record timeline consistency described in the consistency models sec-
tion. Therefore, it uses an asynchronous replication scheme. In order to provide reliability
and replication, PNUTS relies on a pub/sub mechanism, called Yahoo! Message Broker (YMB).
With YMB, PNUTS avoids other asynchronous replication protocols such as Gossip, and op-
timizes geographical replication. Moreover, a replica does not need to acquire the location
of other replicas. Instead, it needs just to subscribe to the data updates within YMB.

In order for applications and users to deal with timeline consistency, API calls which
provide varying consistency guarantees were proposed. The read-any call may return stale
data to the users favoring performance and fast response to consistency. In common cases, a
class of applications requires the read data to be more recent than a given version. The API
call read-critical (required_version) is proposed to deal with these requirements. In contrast,
the read-latest call always returns the most recent version of data. This call however may
be costly in terms of latency. Moreover, the API provides two calls for writing data. The
write call gives ACID guarantees for the write (a write is a transaction with a single opera-
tion). In contrast, test-and-set-write(required_version) checks the version of the actual data in
the system. If, and only if, the version matches required_version, the write is performed. This
flexible API calls give a degree of freedom to applications and users to choose their consis-
tency guarantees and control their availability, consistency, and performance tradeoffs.

3.3.4 Google Spanner

Spanner [45] is a scalable, globally distributed database that provides synchronous replica-
tion and ensures strong consistency. While many applications within Google require geo-
replication for global availability and geographical locality reasons, a large class of these ap-
plications still needs strong consistency and an SQL-like query model. Google BigTable[40]
still serves and manages data efficiently for many applications, but it only guarantees even-
tual consistency at global scale and provides a NoSQL API. Therefore, Spanner is designed to

36 Chapter 3 – Consistency Management in the Cloud

Table 3.2: Cloud Storage Systems
Storage System Consistency

Model
Data Model Cloud Applications/Ser-

vices
API

Amazon Dynamo Eventual Con-
sistency

key/value Amazon.com e-commerce
platform, Few AWS (Ama-
zon Web Services) (eg.
DynamoDB)

multiple consis-
tency levels

Cassandra Eventual Con-
sistency

column fami-
lies

Facebook inbox search, Twit-
ter, Netflix, eBay, SOUND-
CLOUD, RackSpace Cloud

multiple consis-
tency levels

Riak [109] Eventual Con-
sistency

key/value Yammer private social net-
work, Clipboard, GitHub,
enStratus Cloud

multiple consis-
tency levels

Voldemort [125] Eventual Con-
sistency

key/value LinkedIn, eHarmony, Gilt-
Group, Nokia

multiple consis-
tency levels

CouchDB [19] Eventual Con-
sistency

document-
oriented

Ubuntu One cloud, BBC
(Dynamic Content Plat-
form), Credit Suisse (Market
Place Framework)

RESTful API

MongoDB [96] Eventual Con-
sistency

document-
oriented

SAP AG Software En-
treprise, MTV, and Source-
forge

CRUD API

Yahoo PNUTS! Timeline Con-
sistency

relational-like Yahoo web applicastions multiple consis-
tency guarantees

Google
BigTable [40]

Strong Con-
sistency

column fami-
lies

Google analytics, Google
earth, Google personalized
search

NoSQL API

Google Megas-
tore [26]

Strong Con-
sistency

semi-
relational

Google applications: Gmail,
Picasa, Google Calendar,
Android Market, and Ap-
pEngine

SQL-like

Google Spanner Strong Con-
sistency

semi-
relational

Google F1 SQL-like

Redis [107] Strong Con-
sistency

key/value Instagram, Flickr, The
guardian news paper

NoSQL API

Microsoft Azure
Storage [37]

Strong Con-
sistency

blob tables Microsoft internal applica-
tions: networking search,
serving video, music and
game content, Blob storage
cloud service

RESTful API

Apache
HBase [21]

Strong Con-
sistency

column fami-
lies

Facebook messaging sys-
tem, traditionally used with
Hadoop for large set of
applications

NoSQL API

overcome BigTable insufficiencies for the aforementioned class of applications and provides
globe scale external consistency (linearizability) and SQL-like query language similar to that
of Google Megastore [26]. Data is stored into semi-relational tables to support an SQL-like
query language and general-purpose transactions.

The architecture of Spanner consists of a universe that may contain several zones where
zones are the unit of administrative deployment. A zone additionally presents a location
where data may be replicated. Each zone encapsulates a set of spanservers that host data
tables which are split into data structures called tablets. Spanner timestamps data in or-

3.3 – Cloud Storage Systems 37

der to provide multi-versioning features. A zonemaster is responsible for assigning data to
spanservers whereas, the location proxies components provide clients with information to lo-
cate the spanserver responsible for its data. Moreover, Spanner introduces an additional
data abstraction called directories, which are a kind of buckets to gather data that have the
same access properties. The directory abstraction is the unit used to perform and optimize
data movement and location. Replication is supported by implementing a Paxos protocol.
Each spanserver associates a Paxos state machine with a tablet. The set of replicas for a
given tablet is called a Paxos group. For each tablet and its replicas, a long-lived Paxos leader
is designated with a time-based leader lease. The Paxos state machines are used to keep
a consistent state of replicas. Therefore, writes must all initiate the Paxos protocol at the
level of the Paxos leader while reads can access Paxos states at any replica that is sufficiently
up-to-date. At the level of the leader replica, a lock table is used to manage concurrency con-
trol based on a two-phase locking (2PL) protocol. Consequently, all operations that require
synchronization should acquire locks at the lock table.

In order to manage the global ordering and external consistency, Spanner relies on a
time API called TrueTime. This API exposes clock uncertainty and allows Spanner to as-
sign globally meaningful commit timestamps. The clock uncertainty is kept small within the
TrueTime API relying on atomic clocks and GPS based clocks at the level of every datacenter.
Moreover, when uncertainty grows to a large value, Spanner slows down to wait out that
uncertainty. The TrueTime API is then used to guarantee spanner desired correctness prop-
erties for concurrent executions. Therefore, providing external consistency (linearizability)
while enabling lock-free read-only transactions and non-blocking reads in the past.

Spanner presents a novel globally-distributed architecture that implements the first glob-
ally ordered system with external consistency guarantees. While such guarantees were es-
timated to be fundamental for many applications within Google, it is unclear how such
an implementation affects latency, performance, and availability. In particular, the write
throughput might suffer from the two-phase locking mechanism, which is known to be very
expensive at wide scale. Moreover, it is not obvious how Spanner deals with availability
during network failures.

3.3.5 Discussion

As Cloud Computing technology emerges, more and more cloud storage systems have been
developed. Table 3.2 gives an overview of the four aforementioned cloud storage systems
along with several other storage system examples. Many systems implement eventual con-
sistency. These systems are usually destined to serve social networks, web shop applications,
document-based applications, and cloud services. Commonly, they adopt one of the follow-
ing data models: key/value, column families, and document-oriented. Moreover, many of
these systems provide the user with a flexible API that offers various consistency levels.
On the opposite side, systems that implement strong consistency serve many applications
including services such as mail service, advertisement, image hosting platforms, data ana-
lytics applications, and few cloud services as well. These applications, in general, require
strong consistency while their availability and performance requirements are not as high as
web shop services for instance. These systems implement, generally, a semi-relational data
model, column families, and rarely, a key/value model. Moreover, they usually provide
users with SQL-like API.

38 Chapter 3 – Consistency Management in the Cloud

Many of these systems, such as Google Spanner or MongoDB, are designed for a par-
ticular type of applications, and therefore the consistency model is chosen based on that.
In this context, such systems are not suited for all types of workloads and applications and
thus, might fail in meeting consistency and performance requirements. On the other hand,
general–purpose systems such as Cassandra provide flexible APIs and different consistency
levels for runtime usage. However, selecting its consistency level at runtime is difficult and
lacks automation. When choosing a consistency level, it is not obvious what are the conse-
quences in terms of inconsistency and performance overhead. For this type of systems, auto-
mated tools that help evaluate the consistency guarantees and the provided performance of
a given consistency level and subsequently selects the pertinent level to suit the application
requirements are needed.

3.4 Adaptive Consistency

A wide range of applications either require a strictly strong form of consistency or settle for
only static eventual consistency. However, for another class of applications, consistency re-
quirements are not obvious as they depend on data access behavior dynamicity, client needs,
and the consequences (or the cost) of reading inconsistent data. Typical applications that fall
in this class include auction systems and web shop applications. For these types of applica-
tions, availability and fast accesses are vital. Therefore, strong consistency mechanisms may
be too costly. While high levels of consistency are strongly desired for these particular appli-
cations, they are not always required. When an auction starts or in the not so busy periods
of a web shop, a weaker form of consistency is sufficient and do not cause anomalies that the
storage system can not handle. However, strong consistency is required towards the end of
the auction as well as in the busy holiday periods, as heavy accesses are expected and data
inconsistency might be of disastrous consequences. As with this type of situations, static
eventual or strong forms of consistency lead both to undesirable consequences.

In order to cope with the dynamicity of accesses behavior at the massive cloud scale,
various adaptive and dynamic consistency approaches were introduced. Their goal is to use
strong consistency only when it is necessary. These approaches differ in the target consis-
tency tradeoffs (e.g., consistency-cost in [82] and consistency-performance in [87, 90]) and
in the way they define the consistency requirements. Hereafter, we present two adaptive
consistency models (next section will be devoted for our adaptive consistency solution Har-
mony). For both models, we start by presenting the motivation and the use case, then we
present the adaptive approach, and finally we describe the model implementation on the
targeted infrastructure.

3.4.1 RedBlue Consistency

Due to the high network latencies, strong consistency guarantees are too expensive when
storage systems are geographically distributed. Therefore, weaker consistency semantics
such as eventual consistency is the most popular choice for applications that require high
availability and performance. However, weaker consistency models are not suitable for all
applications classes, even if most operations within one application require only eventual
consistency. For instance, in the case of a social network, a transaction that might combine

3.4 – Adaptive Consistency 39

privacy-related updates among other social activity operations might need more than even-
tual consistency. Privacy-related operations require strong ordering at all geographical sites
in order not to violate the privacy setting of the user. On the other hand, social activity op-
erations might only require eventual convergence of replicas no matter the ordering of the
operations.

RedBlue consistency [87] was introduced in order to provide as fast responses as possible
and consistency when necessary. It provides two types of operations: Red and Blue. Blue
operations are executed locally and replicated lazily. Therefore, their ordering can vary from
site to site. In contrast, Red operations require a stronger consistency. They must satisfy
serializable ordering with each other and as a result generate communication across sites
for coordination. Subsequently, the RedBlue order is defined as a partial ordering for which
all Red operations are totally ordered. Moreover, every site has a local causal serialization
that provides a total ordering of operations that are applied locally. This definition of the
RedBlue consistency does not guarantee the convergence of the replicas state. Convergence
is reached if all causal serializations of operations at the level of each site reach the same
state. However, with the RedBlue consistency, Blue operations might have different orders
in different sites. Therefore, non-commutative operations executed in a different order won’t
allow replicas convergence. As a result, non-commutative operations should not be tagged
as Blue if convergence is to be insured. An extension of the RedBlue consistency consists in
splitting original application operations into two components. A generator operation that has
no side effect and is executed only at the primary site and shadow operation, which is executed
at every site. Shadow operations that are non-commutative or violate the application variant
(e.g., negative values for a positive variable) are labeled Red while all other shadow operations
are labeled blue.

The RedBlue consistency is implemented in a storage system called Gemini [87]. Gemini
uses MySQL as its storage backend. Its deployment consists of several sites where each site
is composed of four components: a storage engine, a proxy server, concurrency coordinator, and
data writer. The proxy server is the component that processes client requests for data hosted
on the storage engine (a relational database). Generator operations are performed on a tem-
porary private scratchpad, resulting in a virtual private copy of the service state. Upon the
completion of a generator operation, the proxy server sends the shadow operation to the concur-
rency coordinator. The latter notifies the proxy server whether the operation is accepted or
rejected according to the RedBlue consistency. If accepted, the operation is then delegated to
the local data writer in order to be executed in the storage engine.

RedBlue consistency provides the so needed adaptivity for systems that require perfor-
mance while do not require a strictly strong consistency. However, one difficulty that arises
is the categorization of operations in Red and Blue. It is difficult to intuitively define for each
operation its color without a huge analysis effort. Furthermore, and considering that target
applications are large–scale applications and geographically distributed, it is fair to assume
a high probability for them to operate on large volumes of data and various data types. This
in turn, makes the categorization of operations on data extremely difficult showing a big
necessity for automation.

40 Chapter 3 – Consistency Management in the Cloud

3.4.2 Consistency Rationing

Data created and processed by the same application might be different, and so the consis-
tency requirements on them. For instance, data processed by a web shop service can be
of different kinds. Data kinds may include customers profiles and credit card information,
product sold data, user preferences etc. Not all these data kinds have the same requirements
in terms of consistency and availability. Moreover, within the same category, data might
exhibit dynamic and changing consistency requirements. As an example, an auction system
data might require lower levels of consistency at the start of the auction than towards the
end of it.

The consistency rationing model [82] allows designers to define consistency requirements
on data instead of transactions. It divides data into three categories: A, B, and C. Category
A data requires strong consistency guarantees. Therefore, all transactions on this data are
serializable. However, serializability requires protocols and implementation techniques as
well as coordination, which are expensive in terms of monetary cost and performance. Data
within C category is data for which temporary inconsistency is acceptable. Subsequently,
only weaker consistency guarantees, in the form of session consistency, are implemented
for this category. This comes at a cheaper cost per transaction and allows better availability.
The B category on the other hand presents data for which consistency requirements change
in time as in the case for many applications. These data endure adaptive consistency that
switch between serializability and session consistency at runtime whenever necessary. The
goal of the adaptive consistency strategies is to minimize the overall cost of the provided
service in the cloud. The general policy is an adaptive consistency model that relies on the
probability of update conflicts. It observes the data access frequency to data items in order
to compute the probability of access conflicts. When this probability grows over an adaptive
threshold, serializability is selected. The computation of the adaptive threshold is based
on the monetary cost of weak and strong consistency, and the expected cost of violating
consistency.

Consistency rationing is implemented in a system that provides storage on top of Amazon
Simple Storage Service (S3) [13], which provides only eventual consistency. Clients Requests
are directed to application servers. These servers are hosts on Amazon EC2 [9]. Therefore,
application servers interact with the persistent storage on Amazon S3. In order to provide
consistency guarantees, the update requests are buffered in queues called pending updates
queues that are implemented on the Amazon Simple Queue Service (SQS) [12]. Session consis-
tency is provided by always routing requests from the same client to the same server within
a session. In contrast, and in order to provide serializability, a two-phase locking protocol is
used.

Consistency rationing provides a high level of adaptiveness for applications in the cloud.
The categorization of data into three categories allows defining the consistency requirements
with a high precision. Moreover, applications that process data in the B category can benefit
from adapting consistency according to the access pattern dynamicity. However, the data
categorization within consistency rationing lacks automation. This presents a huge obsta-
cle for Big Data applications that process large volumes of data with various data types.
Defining which data belong to which category manually becomes extremely difficult at such
scales.

3.5 – Summary 41

3.5 Summary

This chapter discusses a major open issue in cloud storage systems: the management of con-
sistency for replicated data. Despite a plethora of cloud storage systems available today,
data consistency schemes are still far from satisfactory. We take this opportunity to ponder
the CAP theorem 13 years after its formulation and discuss its implications in the modern
context of Cloud Computing. The tension between Consistency, Availability and Partition
Tolerance has been handled in various ways in existing distributed storage systems (e.g., by
relaxing consistency at wide-area level). We therefore provide an overview of the major con-
sistency models and approaches used for providing scalable, yet highly available services
on clouds. We categorize the consistency models according to their consistency guaran-
tees into: (1) strong form of consistency including linearizability and serializability, and (2)
weaker form of consistency including eventual, causal and timeline consistency. For the
weaker consistency models, we elaborate on what additional operation ordering is applied
to handle conflict situations. Cloud storage is foundational to Cloud Computing because
it provides a backend for hosting not only user data but also the system-level data needed
by cloud services. We survey the state-of-the-art cloud storage systems used by the main
cloud vendors (i.e., in Amazon, Google, and Facebook). In addition to a general presen-
tation of these systems architectures and use cases, we discuss the employed consistency
model by each cloud storage system. The survey helps us to understand the mapping be-
tween the applied consistency technique and target requirements of the applications using
these cloud solutions. Moreover, and in order to handle Big Data, the scale of cloud sys-
tems is extremely increasing and the cloud applications are significantly diversifying (e.g.,
access pattern and diurnal/monthly loads). We advocate self-adaptivity as a key means to
approach the tradeoffs that must be handled by the user applications. We review several ap-
proaches of adaptive consistency that provide flexible consistency management for users to
reduce performance overhead when data are distributed across geographically distributed
sites.

42 Chapter 3 – Consistency Management in the Cloud

43

Part II

Contributions: Adaptive Consistency
Approaches for Cloud Computing

45

Chapter 4
Consistency vs. Performance:

Automated Self-Adaptive Consistency
in the Cloud

Contents
4.1 Motivation . 46

4.2 Harmony: Elastic Adaptive Consistency Model 47

4.2.1 Zoom on Eventual Consistency Levels in Cloud Storage 47

4.2.2 Harmony . 47

4.3 Stale Reads Rate Estimation . 49

4.3.1 Stale read probability . 49

4.3.2 Computation of the number of replicas Xn 51

4.4 Implementation & Experimental Evaluation 52

4.4.1 Harmony Implementation . 52

4.4.2 Harmony Evaluation . 52

4.4.3 Estimation Accuracy of Stale Reads Rate 58

4.5 Discussion . 59

4.6 Summary . 60

This chapter is mainly extracted from the paper: Harmony: Towards Au-
tomated Self-Adaptive Consistency in Cloud Storage. Houssem-Eddine Chi-
houb, Shadi Ibrahim, Gabriel Antoniu, Maria S. Pérez. In the proceeding
of the 2012 IEEE International Conference on Cluster Computing (Clus-
ter 2012), Beijing, China, September 2012, pp.293-301

46
Chapter 4 – Consistency vs. Performance: Automated Self-Adaptive Consistency in the

Cloud

CONSISTENCY management within cloud storage systems is of high importance. As
highlighted in the previous chapter, multiple consistency tradeoffs impose them-
selves. The Consistency–Performance tradeoff is, arguably, the main tradeoff. Many

static consistency solutions fail in reaching an efficient equilibrium between consistency and
performance for dynamic cloud workloads. In this context, more opportunistic, adaptive
consistency models are needed in order to meet the requirements (and the Service Level
Agreements SLAs) of Big Data applications. However, most of the existing adaptive policies
either lack automation (necessary to select the pertinent consistency level for access opera-
tions of large–scale applications) or fail to apprehend and include the specific consistency
requirements of the application outside its access pattern. Hereafter, in this chapter, we
tackle this specific issue of consistency management for dynamic workloads in the cloud.
Accordingly, we provide an adaptive model that tunes the consistency level at runtime in
order to provide consistency when needed and performance when possible.

4.1 Motivation

Replication is an important feature for Big Data in cloud storage in order to deal with many
challenges as highlighted in Chapter 2. However, with replication, consistency comes into
question. In this context, eventual consistency has become very popular alternative to strong
consistency as to cope with performance and availability requirements of cloud and Big Data
systems. By avoiding synchronous replication, eventually–consistent systems provide low
operation latencies and high levels of availability that are critical for many applications.
For instance, the cost of a single hour of downtime for a system doing credit card sales
authorizations has been estimated to be between $2.2M-$3.1M [106].

As seen in the previous chapter, many cloud storage systems have been developed such
as Amazon Dynamo [49], Cassandra [85], Google BigTable [40], Yahoo! PNUTS [44], and
HBase [21]. These solutions are practical to use as cloud and web service storage backend.
They allow many web services to scale up their systems in an extreme way, while maintain-
ing performance with very high availability. For example, Facebook uses Cassandra to scale
up to host and serve inbox data for more than 800 million active users [59]. However, the
undoubted availability and performance of such solutions prove to be too costly in terms of
inconsistency. As shown in [126], under heavy reads and writes some of these systems may
return up to 66.61 % stale reads. This is an alarming rate, meaning that most probably two
out of three reads are “useless”.

In this chapter, we address the tradeoffs between consistency and performance on the
one hand, and consistency and availability on the other. Accordingly, we propose an au-
tomated and self-adaptive approach, named Harmony, that tunes the consistency level at
runtime to reduce the probability of stale reads caused by the dynamicity of cloud systems
(i.e., the network latency which directly affects updates propagation to replicas) and the ap-
plication demands (i.e., the frequency of access patterns during reads, writes and updates),
thus providing adequate tradeoffs between consistency and both performance and avail-
ability. Harmony embraces an intelligent estimation model to automatically identify the key
parameter affecting the stale reads such as the system states (network latency) and appli-
cation requirements. Harmony, therefore, elastically scales up/down the number of replicas
involved in read operations to maintain a low (possibly zero) tolerable fraction of stale reads,

4.2 – Harmony: Elastic Adaptive Consistency Model 47

hence improving the performance of the applications while meeting the desired consistency
level.

4.2 Harmony: Elastic Adaptive Consistency Model

4.2.1 Zoom on Eventual Consistency Levels in Cloud Storage

The way consistency is handled has a big impact on performance. Traditional synchronous
replication (strong consistency) dictates that an update must be propagated to all the replicas
before returning a success. In contrast, eventual consistency by means of asynchronous quo-
rum replication propagates data lazily to other replicas. Here the consistency level is com-
monly chosen on a per-operation basis and is represented by the number of replicas in the
quorum (a subset of all the replicas). A quorum is computed as: b(replication f actor/2)+ 1c.
Data accesses and updates are performed to all replicas in the quorum. Thus, using this level
for both read and write operations guarantees that the intersection of replicas involved in
both operations contains at least one replica with the latest update. A partial quorum has
a smaller subset of replicas, hence returning the most recent data when read is issued, is
not guaranteed. In the following, the term consistency level refers to the number of replicas
involved in the access operation (read or write).

As presented in Chapter 3, many cloud storage systems such as Dynamo [49], Cassan-
dra [85], Voledemort [125], and Riak [109] adopt asynchronous quorum replication [72, 64].
This gives the application writer more flexibility when selecting the type of consistency that
is appropriate for each operation. This is a useful feature, but until now no automatic adap-
tive model has been proposed for these systems. This means that the application writer has
to choose the type of consistency for every operation, which is extremely difficult when no
information is available regarding the read and write frequencies, network latency, and the
system state in general, or when operating on a very large scale. We present Harmony, an
approach which aims to make this task automatic for the operations that are not critical or
do not need a strictly strong consistency. This is achieved using just a small hint about the
application needs.

4.2.2 Harmony

The goal of Harmony is to dynamically and elastically handle consistency at run time, in
order to provide adequate tradeoffs between consistency and both performance and avail-
ability. Accordingly, Harmony considers not only the application requirements but also the
storage system state. Moreover, rather than relying on a standard model based only on the
access pattern to define the consistency requirement of an application – which is the case
for most existing work – Harmony, in addition, uses the stale read rate of the application to
precisely define such a requirement.

48
Chapter 4 – Consistency vs. Performance: Automated Self-Adaptive Consistency in the

Cloud

Why use the stale reads rate to define the consistency requirements of an applica-
tion?

As an example, we consider two applications that may have at some point the same access
pattern. One is a web shop application that can have heavy reads and writes during the
busy holiday periods, and a social network application that can also have heavy access dur-
ing important events or in the evening of a working day. These two applications may have
the same behavior at some point and are the same from the point of view of the system when
monitoring data accesses and network state as well, thus they may be given the same consis-
tency level. However, the consequences of stale reads are not the same for both applications.
A social network application can tolerate a higher number of stale reads than a web shop
application: a stale read has little effects on the former, whereas it could result in anomalies
for the latter. Consequently, defining the consistency level in accordance to the stale reads
rate can precisely reflect the application requirement.

We propose the following model for distributed storage systems. In our context, data
may be replicated over geographically distant data centers. In order to predict the effect of
weaker consistencies, we compute θstale, the estimation of the stale read rate in the system.
The consistency requirement of an application should be determined by providing the rate
of reads that should be fresh; in other words, the rate of stale reads that is tolerated by the
application. Let this be app_stale_rate. For critical applications that require strong consis-
tency, this rate should be 0%. Similarly, an application that does not need any consistency at
all, such as an application that consists of only reads from archives, the rate could be 100%
(which corresponds to static eventual consistency). A naïve way to map the consistency re-
quirements of an application to the app_stale_rate is the following: for an application that
needs an average consistency, the rate should be 50%. An application that needs less than
average consistency should have a rate of 75%, and an application that requires higher con-
sistency should use 25%. This rate is tunable and can be defined by studying the behavior
and the semantics of an application.

Additionally, in the case of distributed data replication, network latency may be high and
thus, a performance-defining factor. Other than app_stale_rate, in our model, we consider
the network latency and the application access pattern. We permanently collect such infor-
mation in order to estimate the stale read rate. From a higher level perspective, our solution
uses the following decision scheme shown in Algorithm 1 :

Algorithm 1: Harmony: consistency–tuning algorithm
Input: app_stale_rate is the pre-defined consistency requirement.
Description: θstale is estimated stale reads rate.
Output: The most pertinent Consistency Level
if app_stale_rate ≥ θstale then

Choose eventual consistency (Consistency Level = One)
else

Compute Xn the number of always consistent replicas necessary to have
app_stale_rate ≥ θstale
Choose consistency level based on Xn

end

4.3 – Stale Reads Rate Estimation 49

T Tp

Xr

Xw

Xw : Date of write

Xr : Possible date of read
T : Time to write the first replica
Tp : Total propagation time

Time

Figure 4.1: Situation that leads to a stale read

The default consistency level is the basic eventual consistency that allows reading from
only one replica. When such a level may not satisfy the consistency requirements of an ap-
plication due to the growing number of stale reads, the number of replicas Xn that should
be involved in the reading requests is computed. All the following read requests will be per-
formed with Consistency level Xn. In the next section we explain in detail how we estimate
the stale reads rate and how we compute the necessary number of replicas.

4.3 Stale Reads Rate Estimation

In this section, we propose an estimation of the stale read rate in the system by means of
probabilistic computations. This estimation model requires basic knowledge of the applica-
tion access pattern and of the storage system network latency. Network latency in this case
is of high importance, since it is the determinant of the updates propagation time to other
replicas. The access pattern, which includes read rates and write rates is a key factor to de-
termine consistency requirements in the storage system. For instance, it is obvious that a
heavy read-write access pattern would produce higher stale reads when adopting eventual
consistency.

4.3.1 Stale read probability

We define the situation that leads to a stale read in Figure 4.1. The read may be stale if its
starting time Xr is in the time interval between the starting time of the last write and the
end of the propagation time of data to the other replicas. This situation is repeatable for any
of the writes that may occur in the system. Tp in Figure 4.1 is the time necessary for the
propagation of a write or an update to all the replicas. It is computed based on the network
latency Ln and the average write size avgw and should be represented as Tp(Ln, avgw), but
in order to simplify the representation, it will be denoted as Tp in the rest of the chapter.

Transaction arrivals are generally considered as a Poisson process as it is the common
way to model them in literature [126, 118]. We assume that the write and the read arrivals
follow the Poisson distribution of parameter λ−1

w (we chose λ−1
w instead of λw in order to sim-

plify subsequent formulas where the parameter will be inverted) and λr respectively. These

50
Chapter 4 – Consistency vs. Performance: Automated Self-Adaptive Consistency in the

Cloud

parameter values change dynamically at runtime following the read and write requests ar-
rivals monitored in the storage system. Since the distribution of waiting time between two
Poisson arrivals is an exponential process, the stochastic variables Xw and Xr of a write time
and read time follow an exponential distribution of parameters λ−1

w and λr respectively. The
probability of the next read being stale corresponding to the aforementioned situation is
given by Formula (4.1) with N being the replication factor in the system and X being the
number of replicas involved in the read operation. Here Xn =1 for the basic eventual con-
sistency. The left part of Formula (4.1) corresponds to the situation where data is read from
replicas for which data is being or going to be propagated while the right part corresponds
to the situation where data is being read from the replica that is currently handling the write.

Pr(stale_read) =
∞

∑
i=0

(
N − (Xn = 1)

N
× Pr(Xi

w < Xr

< Xi
w + T + Tp) +

Xn = 1
N

× Pr(Xi
w < Xr < Xi

w + T))

(4.1)

Having all the writes times (that may occur in the system) following the exponential
distribution, the sum of Xi

w all the writes follows a Gamma distribution of parameters i and
λw. Hence, the probability in Formula (4.1) becomes:

Pr(stale_read) =
∞

∑
i=0

(
N − 1

N

∫ ∞

0
f i
w(t)(Fr(t + T + Tp)

−Fr(t))dt +
1
N

∫ ∞

0
f i
w(t)(Fr(t + T)− Fr(t))dt)

(4.2)

The time T to write in the local memory is negligible in comparison to TP and therefore,
we can consider it as equal to 0. A simple replacement of the probability mass function (pmf)
of Poisson distribution and the cumulative distribution function (cdf) of Gamma distribution
results in the following probability:

Pr(stale_read) =
∞

∑
i=0

N − 1
N

∫ ∞

0
ti−1 e−

t
λw

γ(i)λi
w
(e−λrt − e−λr(t+Tp))dt (4.3)

After simplifying Formula (4.3), it becomes:

Pr(stale_read) =
∞

∑
i=0

(N − 1)(1− e−λrTP)

N(1 + λrλw)i

∫ ∞

0
ti−1 e

1+λrλw
λw t

γ(i)(λw
1+λrλw

)i
dt (4.4)

The right part of the function in (4.4) is the the cumulative distribution function of a Gamma
law of parameters 1+λrλw

λw
and i, its value is equal to 1. Moreover, if we consider that:

∞

∑
i=0

(
1

1 + λrλw
)i =

1
λrλw

+ 1 (4.5)

4.4 – Implementation & Experimental Evaluation 51

Cassandra

Data Center

Harmony
Workload Executor

Y
C

S
B

 C
lie

n
t

Cassandra Java Client

Threads Stats
Monitoring

Module

Adaptive

Consistency

Module

Rack

Node

Node

Node

.

Rack

Node

Node

Node

.

Data Center

Rack

Node

Node

Node

.

Rack

Node

Node

Node

.

Figure 4.2: Harmony implementation and integration with Cassandra and Yahoo! Cloud
Serving Benchmark

The final value of the probability for next read being stale, after simplification, is given
by:

Pr(stale_read) =
(N − 1)(1− e−λrTp)(1 + λrλw)

Nλrλw
(4.6)

4.3.2 Computation of the number of replicas Xn

To compute the number of replicas to be involved in a read operation necessary to maintain
the desired consistency, we compute Xn in Formula (4.1) to maintain the inequality (4.7) in
order to provide a stale read rate smaller or equal to the app_stale_rate denoted as ASR for
simplicity.

Pr(stale_read) =
∞

∑
i=0

(
N − X

N

∫ ∞

0
f i
w(t)(Fr(t + T + Tp)

−Fr(t))dt +
X
N

∫ ∞

0
f i
w(t)(Fr(t + T)− Fr(t))dt) ≤ ASR

(4.7)

After simplification, and following similar steps for computing in Formulas (4.3), (4.4),
and (4.6), the number of the replicas Xn is given by the Formula:

Xn ≥
N((1− e−λrTP)(1 + λrλw)− ASRλrλw)

(1− e−λrTP)(1 + λrλw)
(4.8)

52
Chapter 4 – Consistency vs. Performance: Automated Self-Adaptive Consistency in the

Cloud

4.4 Implementation & Experimental Evaluation

4.4.1 Harmony Implementation

Harmony can be applied to different cloud storage systems that featured with flexible consis-
tency rules. Currently we have built Harmony in Apache Cassandra “Cassandra-1.0.2" [18].
As described in Chapter 3, Cassandra gives the user flexible usage of consistency levels in
a per-operation manner. In addition, Cassandra is proven to be very scalable, offering very
good performance, and being widely used with large–scale applications such as Facebook
and Twitter. Figure 4.2 gives an overview of the Harmony implementation. Harmony is in-
troduced as an extra layer on Cassandra that aims to provide the most appropriate level of
consistency for reading data. The core of this layer consists of two modules. Both modules
were implemented in Python 2.7.

The monitoring module collects relevant metrics needed for Harmony. The Cassandra
Nodetool [100] was used to collect the number of reads and writes in Cassandra storage, and
the Ping tool was used to collect network latencies in the storage system network. The mon-
itoring module was designed in a multithreaded manner in order to make it time-efficient
and to reduce the monitoring time. Each thread collects data from a set of nodes and at the
end an aggregation process is applied. The monitoring time is measured and taken into ac-
count when computing the read rates and write rates. This data is further communicated
to the adaptive consistency module. This module is the heart of Harmony implementation.
An estimation of the stale read rate is computed and then compared to the application stale
read that can be tolerated (app_stale_rate) in order to provide an adequate consistency level
for the running application at that point of time.

4.4.2 Harmony Evaluation

Evaluation Methodology

We consider two complementary approaches to provide storage as a service for cloud clients.
In our first approach, cloud clients which can be applications running on Cloud Computing
service such as Amazon EC2 [9] or Google App Engine [67], can connect to the storage ser-
vice on an S3-like interface to lease their storage resources. This is a typical interface to a
highly distributed scalable storage backend that will physically host and manage data. We
set up a cloud storage testbed on the Grid’5000 experimental grid and cloud testbed [79] that
federates 10 sites in France. In our second approach, the storage service is provided within
the virtual disks attached to the virtual machines (VMs) side by side with cloud clients. We
set up the underlying storage system on Amazon EC2 clusters and serve applications run-
ning inside VMs.

Micro Benchmark. As a benchmark representing typical workloads in current services hosted
in clouds, based on several case studies [44, 43], we have selected the Yahoo! Cloud Serv-
ing Benchmark (YCSB) framework [137]. YCSB is used to benchmark Yahoo!’s cloud storage
system PNUTS [44]. It is extended to be used with a variety of open-source data stores such
as mongoDB [96], Hadoop HBase [21] and Cassandra [85]. YCSB provides the characteris-
tics of a real cloud–serving environment such as scale-out, elasticity and high availability.
For this purpose, several workloads have already been proposed in order to apply a heavy

4.4 – Implementation & Experimental Evaluation 53

read load, heavy update load, and read latest load, among other workloads. Moreover, the
benchmark is designed to make the integration of new workloads very easy. We use YCSB-
0.1.3, as shown in Figure 4.2. We have modified the provided Java client for Cassandra in
order to allow read operations to be performed with different consistency levels at run time.
The Java client uses Thrift [23] to communicate with the cluster and is provided with the
set of hosts from which it should request a read or a write. The modified Java client reads
data from Cassandra with the consistency level provided dynamically by the adaptive con-
sistency module.

Experimental Setup

We have evaluated Harmony with Cassandra deployed on both Grid’5000 and Amazon EC2.

Setup on Grid’5000. We use two clusters in the Sophia site with a total of 84 nodes and 496
cores. All nodes are equipped with x86_64 CPUs and 4 GB of memory. The nodes are inter-
connected with Gigabit Ethernet. All nodes from the first cluster have two hard disks with
combined capacity of 600 GB per node. As for the second cluster, the nodes are all equipped
with hard disks of 250 GB.

Setup on Amazon EC2. We have used 20 Virtual machines of m1.large type located in the us-
east-1a availability zone in the east cost. Each virtual machine has 2 cores and 7.5 GB of
memory. The total size of disk storage available is 14.78 TB.

In both experiments, Cassandra was configured in order to have a replication factor of
5. Moreover, OldNetworkTopologyStrategy was chosen as a replication strategy. This strategy
ensures that data is replicated over all the clusters and racks. We have deployed Cassandra
on the two clusters on the Grid’5000 and on the 20 nodes of Amazon EC2. We have used
YCSB with workload-A which provides a heavy read-update data access. For the experi-
ments conducted on Grid’5000, we have initially inserted a load of 3 million rows and a total
size of 14.3 GB after replication. Each workload run had a total of 3 million operations con-
sisting of reads and updates. For the experiments that were conducted on Amazon EC2, an
initial load of 5 million rows was inserted, with a total size of 23.85GB after replication. Each
workload that was run consisted of 10 million operations.

Stale Reads Estimation in Harmony

We have first studied the impact of the workload access patterns, the number of clients,
and network latency on the stale reads estimation. Accordingly, we use two workloads:
workload-A, which has a heavy read-update access pattern, and workload-B, which has a
heavy read access pattern with a small portion of writes representing approximately 5% of
the total number of operations. We ran both workloads, varying the number of threads
starting with 90 threads, then, 70, 40, 15 and finally, one thread.

The impact of workload access pattern and client number. As shown in Figure 4.3, the probability
of reading stale data for workload-B is relatively smaller than the one for workload-A. This
is because the number of updates is smaller. We observe that the number of updates plays
very important role in causing stale reads even with a high number of reads. Moreover, we
observe that the probability of reading stale data varies according to the number of threads.
We can see that for workload-A, the probability of stale reads gradually decreases with the

54
Chapter 4 – Consistency vs. Performance: Automated Self-Adaptive Consistency in the

Cloud

0 10000 20000 30000 40000 50000 60000 70000 80000
0.0

0.2

0.4

0.6

0.8

1.0

1154070
P

ro
b

a
b

ili
ty

 o
f
S

ta
le

 R
e
a

d
s

Running time (ms)

 Workload-A
 Workload-B

90 Threads

Figure 4.3: Workloads and Number of Clients impact on stale read probability

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty
 o

f
S

ta
le

 R
e

a
d

s

Network Latency (ms)

Figure 4.4: Network latency impact on stale read probability

number of threads, because increasing the thread number increases the throughput and thus
increases the reads and writes rate. Also, we notice the probability reduction gap is big
during the transition (changing the number of threads).

The impact of network latency. In order to see the impact of network latency on the stale reads
estimation we ran workload-A –varying the number of threads starting with 90 threads,
then, 70, 40, 15 and finally, one thread– on Amazon EC2 and measure the network latency
during the run-time. Figure 4.4 presents the results. We can see that high network latency
causes higher stale reads regardless of the number of the threads (higher latency dominates
the probability of stale reads), while when the latency is small the probability will be varied
according to the reads and writes rates (with smaller impacts of the network latency).

4.4 – Implementation & Experimental Evaluation 55

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

220

240

9
9

th
 P

e
rc

e
n

ti
a

l
L

a
te

n
c
y
 (

m
s
)

Client Threads

 Harmony-40% Tolerable SR
 Harmony-20% Tolerable SR
 Eventual Consistency (ONE)
 Strong Consisteny

Figure 4.5: Read operation latency on Grid’5000

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

9
9

th
 P

e
rc

e
n

ti
a

l
L

a
te

n
c
y
 (

m
s
)

Client Threads

 Harmony-60% Tolerable SR
 Harmony-40% Tolerable SR
 Eventual Consistency (ONE)
 Strong Consisteny

Figure 4.6: Read operation latency on Amazon EC2

56
Chapter 4 – Consistency vs. Performance: Automated Self-Adaptive Consistency in the

Cloud

0 20 40 60 80 100
0

5000

10000

15000

20000

25000

30000

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

Client Threads

 Harmony-40% Tolerable SR
 Harmony-20% Tolerable SR
 Eventual Consistency (ONE)
 Strong Consisteny

Figure 4.7: Throughput on Grid’5000

Latency and throughput of the application in Harmony

As mentioned earlier, in Harmony, the application requirements are defined as the stale reads
rate that an application can tolerate during its running. Accordingly, we compare Harmony
with two settings (two different tolerable stale read rates) with strong and eventual con-
sistency on our both storage approaches (Grid’5000 and Amazon EC2). The first tolerable
stale read rates are 40% for Grid’5000 and 60% for Amazon EC2 (these rates tolerate more
staleness in the system implying lower consistency levels and thus less waiting time), and
the second tolerable stale read rates are 20% for Grid’5000 and 40% for Amazon EC2 (these
rates are more restrictive than the first ones, meaning that the number of read operations
performed with a higher level of consistency is larger). Network latency is higher in Ama-
zon EC2 than in Grid’5000 (5 times higher in the normal case), thus we choose higher stale
read rate for the same workload with Amazon EC2. We run workload-A while varying the
number of client threads.

Figures 4.5 and 4.6 present the 99th percentile latency of read operations when the num-
ber of client threads increases on Grid’5000 and EC2 respectively. While the strong con-
sistency approach provides the highest latency having all the reads to wait for the replies
from all the replicas spread over different racks, the eventual consistency approach is the
one that provides smaller latency because all the read operations are performed on one close
replica but at the cost of consistency violation. We can clearly see that Harmony with both
settings provides almost the same latency as the eventual consistency. Moreover, the latency
increases by decreasing the tolerable stale reads rate of an application as the probability of
stale read can easily get higher than these rates, which requires a higher consistency levels
and, as a result, a higher latency.

In Figures 4.7 and 4.8, we show the overall throughput for read and write operations
with different numbers of client threads. The throughput increases as the number of threads
increases. However, the throughput decreases with more than 90 threads. This is because the
number of client threads is higher than the number of storage hosts and threads are served
concurrently. We can observe that the throughput is smaller with strong consistency. The fact
that read operations with higher consistency levels have high latencies, makes the number

4.4 – Implementation & Experimental Evaluation 57

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

Client Threads

 Harmony-60% Tolerable SR
 Harmony-40% Tolerable SR
 Eventual Consistency (ONE)
 Strong Consisteny

Figure 4.8: Throughput on Amazon EC2

0 20 40 60 80 100
0

3000

6000

9000

12000

15000

18000

N
o

.
o

f
S

ta
le

 R
e

a
d

s

Client Threads

 Harmony-40% Tolerable SR
 Harmony-20% Tolerable SR
 Eventual Consistency (ONE)
 Strong Consisteny

Figure 4.9: Observed staleness on Grid’5000

of possible operations per second smaller. We can notice that our approach with a stale
reads rate of 40% and 60% for Grid’5000 and Amazon EC2 respectively, provides very good
throughput that can be compared to the one of static eventual consistency approach. But,
while exhibiting very good throughputs, our adaptive policies provide a better consistency
and fewer stale reads due to the fact that higher consistency levels are chosen only when it
matters.

Actual Staleness in Harmony

In Figures 4.9 and 4.10 , we show that Harmony, with all the policies with different applica-
tion tolerated stale reads rates, provides less stale reads than the eventual consistency ap-
proach. Moreover, we can see that, with a more restrictive tolerated stale reads rate, we get a
smaller number of stale reads. We observe that with rates of 20% and 40% for Grid’5000 and
Amazon EC2 respectively, the number of stale reads decreases when the number of threads
grows over 40 threads. This is explained by the fact that with more than 40 threads the es-

58
Chapter 4 – Consistency vs. Performance: Automated Self-Adaptive Consistency in the

Cloud

0 20 40 60 80 100
0

10000

20000

30000

40000

50000

60000

N
o

.
o

f
S

ta
le

 R
e

a
d

s

Client Threads

 Harmony-60% Tolerable SR
 Harmony-40% Tolerable SR
 Eventual Consistency (ONE)
 Strong Consisteny

Figure 4.10: Observed staleness on Amazon EC2

timated rate of stale reads gets higher than 20% and 40% respectively, for most of the run
time, and higher consistency levels are chosen, thus decreasing the number of stale reads.
It needs to be pointed out that this number of stale reads is not the actual number of stale
reads in the system in the normal run, but it is representative.

In fact, to measure the number of stale reads within YCSB, we perform two read op-
erations for every read operation in the workload. The first read is performed with the
relevant consistency level chosen by our approach, and the second read is performed with
the strongest consistency level. Then, we compare the returned timestamps from both reads,
and if they do not match, it means that the read is stale. Although this helps to estimate the
number of stale reads, it completely changes the latency of reads and the throughput in the
system. Moreover, it directly affects the monitoring data about system state. Additionally,
the second read with strong consistency level provides more time for the next write to be
propagated to the other replicas and, thus more chances for the next read to be fresh.

4.4.3 Estimation Accuracy of Stale Reads Rate

In order to measure the accuracy of stale reads rate, we designed and implemented our
own workload where we can have a total control and store and access information that
help us detect stale reads. The workload consists in multiple threads (where every thread
instantiates a Cassandra client). Each thread is configured to perform 100 operations with
read/write ratio probability of 60/40. The waiting time between operations is generated
randomly following an exponential distribution of average waiting time of 1/10 (ms). We
started Cassandra on 5 nodes in the Sophia site and we used ’OldNetworkTopologyStrategy’
as a replication strategy with a replication factor of 5. The system was initialized with 5 keys.

We run our workload with an increasing number of clients (threads), starting with 5, then
10, 20, 50, and finally 100 clients. Stale reads are detected based on timestamp comparisons
in the log files. For every read, its returned timestamp is compared to the timestamp of
the last write (update) to that specific key. If the two timestamps do not match, the read is
flagged as stale.

Figure 4.11 shows both the observed stale rate and our estimation with the increasing

4.5 – Discussion 59

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

s
ta

le
 r

a
te

 (
%

)

client threads

observed stale rate

estimated stale rate

Figure 4.11: Stale read rate estimation accuracy

number of clients. We can observe that our estimation model provides close values to the
observed ones, which demonstrates the effectiveness of our probabilistic computations. In
addition, the accuracy of the estimation is higher when the number of clients is smaller.
When the number of clients grows higher, the random generation of waiting times between
operations in different clients in the workload makes standard deviation from the mean
arrival time rate higher, which increases the margin of error. However, such error remains
small and does not affect the overall estimation as can be seen in Figure 4.11.

4.5 Discussion

Eventual consistency was employed in cloud storage system as an alternative to traditional
strong consistency to achieve scalable and high-performance services [124]. Many commer-
cial cloud storage systems have already adopted the eventual consistency approach such as
Dynamo [49] in Amazon S3 [13], Cassandra [85] in Facebook [59] and PNUTS [44] in Ya-
hoo!. A fair number of studies have been dedicated to measuring the actual provided con-
sistency in cloud storage platforms [126, 17, 29]. Wada et al. [126] investigate the consistency
properties provided by commercial storage systems and report on how and under what cir-
cumstances consumer may encounter stale data. Also, they explore the performance gain
of using weaker consistency constraints. Anderson et al. [17] propose an offline consistency
verification algorithm and test three kind of consistency semantics on registers including
safety, regularity, and atomicity in the Pahoehoe key-value store using a benchmark simi-
lar to YCSB [43]. They observed that consistency violations increase with the contention of
accesses to the same key.

Moreover, in order to meet the consistency requirements of applications and reduce the
consistency violation, some studies are done on adaptive consistency tuning in cloud stor-
age systems [82, 111, 128]. Kraska et al. [82] propose a flexible consistency management that
is able to adapt the resulting consistency level to the requirements stated by applications.
The inconsistencies considered in their work are due to update conflicts. Accordingly, they
build a theoretical model to compute the probability of update conflict, and then compare it

60
Chapter 4 – Consistency vs. Performance: Automated Self-Adaptive Consistency in the

Cloud

to a threshold. As a result, they choose either serializability using strong consistency or ses-
sion consistency, which is a weaker consistency. However, their approach cannot be applied
with eventual consistency as weaker consistency. This is due to the fact that in eventual con-
sistency, the staleness is due to the update propagation latency rather than just the conflict
of two or more updates on different replicas. Moreover, the threshold –used to determine
the type of consistency– is computed based on the financial cost of pending update queues
and not related to the storage backend itself. Wang et al.[128] propose an application-based
adaptive mechanism of replica consistency. This mechanism was proposed with a specific
replication architecture. The architecture relies on multi-primary replicas and secondary
replicas where the latter are read-only replicas. Consistency is either strong or eventual and
the choice between the two is made by comparing the read rate and the write rate to a thresh-
old. The main limitation of this work is the arbitrary choice of a static threshold. In addition,
this approach was proposed for their specific proposed replication architecture, which is not
commonly used in current cloud storage solutions.

In contrast to the aforementioned work, Harmony is using the stale reads rate to define
the consistency requirements of the application. Moreover, it dynamically alters the replicas
number involved in an operation according to the estimated stale reads rate and the network
latency, during run-time. Thus Harmony achieves adequate tradeoffs between consistency
and both performance and availability.

4.6 Summary

With the explosion of cloud storage businesses and the increasing number of web services
migrating to the cloud, a strong consistency model becomes very costly when scalability and
availability are required. Thus, weaker consistency models have been proposed, but these
models may lead to far too much inconsistency in the system. In this chapter, we presented
Harmony, a novel approach that handles data consistency in cloud storage adaptively by
choosing the most appropriate consistency level dynamically at run time. In Harmony, we
collect relevant information about the storage system in order to estimate the stale read rate
when consistency is eventual, and make a decision accordingly. In order to be application-
adaptive, Harmony takes into account the application’s needs expressed by the stale read
rate that can be tolerated. We show that our approach provides better performance than
traditional approaches that are based on strong consistency. Moreover, it provides more ad-
equate consistency than static eventual consistency approaches. In addition, our solution
is designed to be completely tunable to provide the system or the application administra-
tor with the possibility of controlling the degree of compromise between performance and
consistency.

61

Chapter 5
Consistency vs. Cost: Cost-Aware
Consistency Tuning in the Cloud

Contents
5.1 Motivation . 62
5.2 How Much does Storage Cost in the Cloud ? 63

5.2.1 Cloud Storage Service and Monetary Cost 63
5.2.2 Cost Model . 64
5.2.3 Consistency vs. Cost: Practical View 68

5.3 Bismar: Cost-Efficient Consistency Model 73
5.3.1 A metric: Consistency-Cost Efficiency 73
5.3.2 Bismar . 73

5.4 Experimental Evaluation . 75
5.4.1 Consistency–Cost Efficiency . 76
5.4.2 Monetary Cost . 76
5.4.3 Staleness vs. monetary cost . 78
5.4.4 Zoom on resource cost in Bismar. 78

5.5 Discussion . 79
5.6 Summary . 80

This chapter is mainly extracted from the paper: Consistency in the Cloud:
When Money Does Matter! Houssem-Eddine Chihoub, Shadi Ibrahim,
Gabriel Antoniu, Maria S. Pérez. In the proceeding of the 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Com-
puting (CCGRID 2013), Delft, Netherlands, May 2013, pp.352-359

62 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

IN the previous chapter we addressed the important issue of the tradeoff between consis-
tency and performance. This tradeoff has long been the center of studies on consistency
over the years. However, in the era of Big Data and Cloud Computing, another tradeoff

between consistency and monetary cost is equally important. In this chapter, we address this
particular topic, thereby, providing a thorough study of the impact of consistency manage-
ment on the monetary cost. In addition, we leverage this study to explore how to provide
cost–efficient management of consistency with significant money savings.

5.1 Motivation

A particularly challenging issue that arises in the context of storage systems with
geographically-distributed data replication is how to ensure a consistent state of all the
replicas as seen in Chapter 3. Insuring strong consistency by means of synchronous repli-
cation introduces an important performance overhead due to the high latencies of networks
across data centers (the average round trip latency in Amazon sites varies from 0.3ms in
the same site to 380ms in different sites [87]). Consequently, many Internet services tend to
rely on storage systems with eventual consistency. In this context, consistency–performance
and consistency–availability tradeoffs have long been investigated in literature: many con-
sistency optimization solutions have been devoted to improving the application throughput
and/or latency while preserving acceptable stale reads rate (including our approach Har-
mony introduced in the previous chapter). However, in the area of Cloud Computing, the
economic cost of using the rented resources is very important and should be considered
when choosing the consistency policy.

Since Cloud Computing is an economically–driven paradigm where the monetary cost is
extremely important, in particular at the scales of Big Data, the monetary cost of the various
consistency models should be explored. However, very few studies investigated this aspect.
In this chapter, we investigate better approaches in order reduce the monetary cost while
preserving acceptable level of consistency. Hereafter, our goals are the following:

Service/bill details. We introduce a detailed study to provide in-depth understanding of the
monetary cost of cloud services with respect to their adopted consistency models. We
discuss the different resources contributed to a service and the cost of these resources.
We introduce an accurate decomposition of the total bill of the service into three parts
with respect to the contributed resources: virtual machine (VM) instances cost, storage
cost and network cost. To complement our analysis, a series of experiments are con-
ducted to measure the monetary cost of different consistency levels in the Cassandra
system [85] —as an illustrative popular cloud storage system with versatile consistency
usage— on Grid’5000 [79] and the most popular cloud service Amazon EC2 [9]. Such
a study is important as a big-picture understanding of consistency in geo-replicated
systems must take into account the monetary cost within the cloud.

Novel metric. We define a new metric that express the relation between consistency and
cost and evaluate the efficiency of consistency in the cloud.

Equitable consistency at low cost. Based on the efficiency metric, we introduce a simple
yet efficient approach named Bismar, which adaptively tunes the consistency level at

5.2 – How Much does Storage Cost in the Cloud ? 63

runtime in order to reduce the monetary cost while simultaneously maintaining a low
fraction of stale reads.

5.2 How Much does Storage Cost in the Cloud ?

5.2.1 Cloud Storage Service and Monetary Cost

Since Cloud Computing is an economically–driven distributed system paradigm, deploying
and running services and applications in the cloud comes with a monthly bill. In general,
services require a set of linked servers (distributed in multi-sites) to run the web-service
applications; these servers are attached to a group of storage devices, which store the ser-
vices data. With respect to cloud resource offers, a basic service bill includes charges for the
following resources1 :

Computing resources. Virtual machines equipped with a certain amount of CPU and mem-
ory resources. Cloud IaaS providers offer different VM instances — varying in the re-
source’s capacity and accordingly the prices — and typically charged for the incurred
virtual machine hours. For example, Amazon EC2 [9] offers a set of instances with
different configurations and prices: while the cheapest instance (small instance, equiv-
alent to a server with a CPU capacity of a 1.0-1.2GHz and memory size of 1.7GiB)
comes at cost of 0.065$ per hour, the most expensive instance (High I/O Quadruple
Extra Large Instance, equivalent to a server with CPU capacity of 35× 1.0− 1.2GHz
and memory size of 60.5GiB) comes at cost of 3.100$ per hour.

Storage resources. Cloud IaaS providers offer two types of storage services that are different
in their pricing and usability. Taking Amazon Web Services as an illustrating example,
there are two representative storage services: Amazon Simple Storage Service (Ama-
zon S3) and Amazon Elastic Block Store (Amazon EBS). The storage services are typi-
cally billed according to the used GBs per month and number of requests to the stored
data. Taking into account the tremendous amount of data that current services need
to manage and maintain, and the need to reduce the latency of data movement when
processing data, Amazon EBS becomes the customer’s first choice to achieve not only
highly scalable and high performance services but highly reliable and predictable ones
as well. This is despite the fact that Amazon EBS can be attached to any running Ama-
zon EC2 instance and can be exposed as a device within the instance. Consequently, in
this study we adopted the Amazon EBS pricing scheme.

Network resources. Cloud IaaS providers equip their infrastructure with high–speed net-
works not only within data centers but also across geographically distributed centers.
This comes at a monetary cost, although services don’t currently reflect the network us-
age and cost. The network cost is usually embedded within the cost of other services
(computational service and storage services), and it varies according to the service type
and within/across sites (e.g., the cost of data transfer between Amazon EC2 instances
is zero if they are located in the same availability zone).

1The pricing of some cloud services (computing and storage services) may vary at different providers or at
different provider-sites. As the goal of our study is to explore the consistency cost variation, we assume that the
computing and storage pricing is the same at different sites

64 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

Monetary cost of consistency: why does it matter?

Strong consistency by the means of synchronous replications may introduce high latencies
due to the cross-sites communication and therefore will significantly increase the monetary
cost of the services:

• High latency causes high monetary cost. This is due to the fact that the cost of leasing a
VM-instance is proportional to the latency, which in turn affects the throughput of the
system resulting in high runtime, in addition to the increased cost of both the storage
(e.g. number of requests to the copies) and the communication cost (e.g. number of
cross-sites communication) due to the synchronous cross-site replication.

• High latency causes significant financial losses for service providers that use such stor-
age systems. For instance, the cost of a single hour of downtime for a system doing
credit card sales authorizations has been estimated to be between 2.2M$-3.1M$ [106].

On the other hand, we observe that eventual consistency or weaker consistency may
reduce the monetary cost with respect to a lower maintained latency and therefore lower
instance costs, but this comes at the risk of increasing the rate of stale data (e.g., [126] demon-
strated that under heavy reads and writes some of these systems may return up to 66.61%
stale reads). This in turn, adversarily impacts the financial profit of the service providers:
it generates significant financial losses as it violates the SLAs of services users. This makes
eventual consistency a two-edged sword. While the eventual consistency has been exploited
extensively in literature and commercial products, its monetary cost and negative impacts
on the stale reads rate have been largely ignored.

The aforementioned observations, combined with the urgent need to address the
consistency-cost efficiency and stale reads problems associated with quorum replications,
motivate us to an in-depth study of the monetary cost of the different consistency levels in
the cloud and — as a result — to propose our cost efficient optimization.

5.2.2 Cost Model

After building a big-picture understanding of the cost of services deployed in the cloud
by describing the different resources contributed to obtain a certain level of consistency in
geo-replicated storage systems. Hereafter, we complement our macroscopic analysis with a
detailed analysis of the consistency cost in the cloud, using a widely used open source geo-
replicated storage system that supports multi-level consistency as an illustrated example,
namely Cassandra [4].

Ideally, we would like to get a deep idea of why different consistency levels may result
in different costs, how the resources accordingly contribute to the total cost, and how back-
ground operations such as read repair can impact the overall cost.

The choice of consistency level (cl) affects all of these three costs. When higher consis-
tency levels are required more replicas are involved in the requests. That affects both oper-
ations latency and throughput, which leads to a higher runtime. Similarly, network traffic
grows higher with higher consistency levels, which leads to a higher networking bill. More-
over, higher consistency levels generate a higher number of requests from storage devices,
directly affecting storage cost.

5.2 – How Much does Storage Cost in the Cloud ? 65

Formula 5.1 presents the overall cost for geo-replicated based services for a given con-
sistency level cl. Essentially, this cost is the combination of the VM instances cost Costin(cl),
the backend storage cost Costst(cl), and network cost Costtr(cl).

Costall(cl) = Costin(cl) + Costtr(cl) + Costst(cl) (5.1)

5.2.2.1 Computing unit: instances cost

A common pricing scheme used by recent cloud providers is primarily based on virtual
machine (VM) hours. Formula 5.2 presents the cost of leasing nbInstances VM-instances for
a certain time (runtime).

Costin(cl) = nbInstances× price× d runtime
timeUnit

e (5.2)

Here the price is the dollar cost per timeUnit2 (e.g., In Amazon EC2 small instance the
price is 0.065 per hour).

In order to generalize our pricing model and avoid inaccurate pricing due to unexpected
network behavior (especially that we are studying the consistency cost in geo-distributed
sites), we present the runtime in the form of number of operations nbOps in the workload
while fixing the throughput of a specific consistency level.

runtime =
nbOps

throughput
(5.3)

The throughput varies from one consistency level to another according to the size of the
internal traffic between sites.

5.2.2.2 Storage cost

As mentioned earlier the storage cost includes the cost of leased storage volume (GB per
month) and the cost of I/O requests to/from this attached storage volume. In Amazon EC2
for instance, this would be the cost of attaching Amazon EBS to VM-instances in order to
increase the storage capacity using a highly durable and reliable way. The total storage cost
is accordingly given by Formula 5.4 :

Costst(cl) = costPhysicalHosting + costIORequests (5.4)

Based on the size of hosted data (including all replicated data) nbNodes× dataSize where
dataSize is the average data size per volume attached to VM-instance (locality and load bal-
ancing are important features in current data centers), we calculate the costPhysicalHosting
in Formula 5.5.

costPhysicalHosting = nbNodes× ddataSize
sizeUnit

e × price (5.5)

2We use the ceiling function because most providers charge each partial instance-hour as a full hour.

66 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

where the price is the dollar cost per sizeUnit (e.g. in Amazon EBS the price is 0.10 per
GB−month).

We further estimate costIORequests in Formula 5.6.

costIORequests =
cl× nbOps + readRepairIO

nbRequestsUnit
× price (5.6)

where nbOps is the number of operation with respect to the consistency level cl (it varies
according to the number of replicas involved in an operation). The read repair in a back-
ground operation is mostly triggered when inconsistency is detected. It generates requests
to the storage devices and therefore it is important to include the read repair operations in
our formula readRepairIO (more details on the read repair function will be provided further
in this section).

5.2.2.3 Network cost

The network cost varies in accordance to the service type of the source and destination (e.g.,
computational service and storage services) and whether the data transfer is within or across
sites. In general, inter–datacenter communications are more expensive than intra–datacenter
communications. Formula 5.7 shows the total cost of network communications as the sum
of inter– and intra–datacenter communications 3(tra f f icInterDC and tra f f icIntraDC).

Costtr (cl) = price(interDC)× d trafficInterDC
sizeUnit

e+ price(intraDC)× d trafficIntraDC
sizeUnit

e (5.7)

where price(interDC) and price(intraDC) are the dollar cost per sizeUnit.
Hereafter we illustrate how to estimate both the inter- and intra-datacenter traffic.
Formula 5.8 shows our model of the inter–datacenter, tra f f icInterDC, given the repli-

cas communication interDcRep, the request routing requestrouting, and the internal mecha-
nisms traffic IMechTra f f ic.

trafficInterDC = interDcRep + requestRouting + IMechTraffic (5.8)

The inter-site traffic generated by the replicas communications strongly depends on the
consistency level and the distribution of replication among data centers (i.e., the number of
replicas involved in a request to other data centers which can be estimated as b(nbDc− 1)×

cl
nbDcc4 where nbDc is the number of data centers). Formula 5.9 shows our estimation of the
inter traffic generated by the replicas communications.

InterDcRep = b(nbDc - 1)× cl
nbDc

c ×AvgDataSize× nbOps (5.9)

3For simplicity, we consider only two geographical areas within which the prices differ. Some cloud providers
may have more geographically- oriented prices: within availably zone, within regions, between regions. How-
ever, our pricing model can be easily extended to any number of geographical-oriented pricing options.

4 For example if the (nbDC = 3) and number of replicas involved in an operation (cl = 4), the estimated
number of replicas involved in a request on other data centers is b2× 4

3 c = b
8
3 c = 2 where b c is a floor function.

5.2 – How Much does Storage Cost in the Cloud ? 67

where avgDataSize is the average data size needed to be propagated to other replicas for one
operation.

The traffic generated by the request routing and internal mechanisms depends essentially
on the storage system design and implementation. Since our approach is destined to run on
Cassandra storage, hereafter we illustrate such values with respect to this particular storage
system. In Cassandra, all nodes (peers) have equal ranges of data and thus have an equal
number of keys: this implies that each node is responsible for 1

number o f nodes fraction of the
keys.

Giving the number of nodes as nbNodes and the average number of nodes per datacenter
avgNodesDc, the average number of request routing for an operation can be estimated as
nbNodes−avgNodesDc

nbNodes . The size of inter traffic generated by request routing for a number of
operations nbOps is therefore denoted as Formula 5.10.

requestRouting(interDC) =
nbNodes− avgNodesDc

nbNodes
× nbOps× avgDataSize (5.10)

In Cassandra storage, the main internal traffic is generated by the gossip traffic and read
repair mechanism as shown in Formula 5.11. The gossip traffic — used to share the state
of nodes in the ring — is relatively small since it is just transmitting the state of one node,
which is negligible compared to data transfer.

IMechTraffic = gossip(interDc) + readRepair(interDc) (5.11)

On the other hand, the read repair is used to propagate data to out of date (stale) replicas.
The read repair function is triggered in two cases:

1. At random times for some requests: defined by the system administrator.

2. Whenever inconsistency is detected.

Formula 5.12 shows that read repair traffic depends on the probability or chance of trig-
gering the mechanism rrChance which is defined by the storage administrator, as well as the
chance of detecting mismatching replica timestamps mmChance = r f−cl

r f ×
nbWrites

nbReads+nbWrites ,
where r f is the replication factor, nbWrites and nbReads are the number of write and reads.

readRepair(interDC) = nbOps× avgDataSize

×(rrChance× b rf
nbDc

c+ mmChance× b rf− cl
nbDc

c)
(5.12)

Computing the intra–datacenter traffic size is very similar to the one of inter–datacenter
traffic. However, the intra traffic size of request routing is given by Formula 5.13.

requestRouting(intraDC) =
avgNodesDc− 1

nbNodes
× nbOps× avgDataSize (5.13)

68 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

Nancy

20

Sophia

30

Network

Router

Figure 5.1: Experiments setup on Grid5000

Similarly, we only consider the traffic in-between replicas within the same datacenter:
Accordingly, the intra-site traffic generated by the replicas communications is denoted as in
Formula 5.14.

intraDcRep = (d cl
nbDc

e − 1)× avgDataSize× nbOps (5.14)

The read repair traffic is given by Formula 5.15.

readRepair(intraDC) = nbOps× avgDataSize× (rrChance× (rf− b rf
nbDc

c)

+
rf− cl

rf
× ((rf− cl)− b rf− cl

nbDc
c))

(5.15)

5.2.3 Consistency vs. Cost: Practical View

As we mentioned, our goal is to investigate the monetary cost variation of geo-replicated
storage systems when adopting different consistency levels. We therefore complement our
earlier analysis, by evaluating the monetary cost in Cassandra.

Experimental setup

We run our experiments on Grid’5000 [79] and Amazon Elastic Compute Cloud (EC2). On
Grid’5000, we deployed Cassandra on two data centers (sites): with 30 nodes on the Sophia
site and 20 nodes on the Nancy site as shown in Figure 5.2.3. All the nodes in Sophia are
equipped with a 250 GB hard disk, 4 GB of Memory, and 4-cores AMD Opteron. The nodes
in Nancy are equipped with disks of 320 GB space, 16 GB of Memory, and 8-cores Intel
Xeon. The network connection between the two sites is provided by RENATER (The French
national telecommunication network for technology, education, and research). It consists of
a standard architecture of 10 Gbit/s dark fibers. The network route between the two sites is

5.2 – How Much does Storage Cost in the Cloud ? 69

Table 5.1: Pricing schemes used in our evaluation
Computing unit
Large instance

Storage unit Storage Re-
quests

Intra comm Inter
Comm

0.32$ per hour 0.10$ per GB/-
month

0.10$ per 1
million Re-
quests

0.00$ per
GB

0.01$ per
GB

the following: Nancy-Paris-Lyon-Marseille-Sophia. The average round trip latency is on aver-
age 0.230 ms within the same site and 18.2 ms in-between the two sites. On Amazon EC2, we
also deployed Cassandra on 18 large instances (the m1.large type) on two availability zones:
10 instances on us-east-1a and 8 instances on us-east-1d. The average round trip latency is on
average 0.284 ms within the same site and 0.813 ms in-between the two availability zones.

We used Cassandra-1.0.2 with a replication factor of 5 replicas: 2 replicas are allocated in
Nancy and 3 replicas in Sophia (The same replication factor is used in Amazon EC2: 2 replicas
in us-east-1d and 3 replicas in us-east-1a). Our replication strategy uses NetworkTopologyStrat-
egy to enforce replication across multiple data centers. We adopt the pricing schemes from
Amazon web services as shown in Table 5.15. We study the cost variation by evaluating
different consistency levels (e.g., eventual consistency: one, two, Quorum: three, and strong
consistency: All).

Micro Benchmark

As for the evaluation of Harmony in the previous chapter, our need for micro benchmark
that exhibits typical characteristics of cloud workloads, led us to use Yahoo! Cloud Serving
Benchmark (YCSB). YCSB can be used with multiple cloud storage solutions such as mon-
goDB [96] , Hadoop HBase [21] and Cassandra [85]. In addition, YCSB exhibits real cloud
features including as scale-out, elasticity and high availability. In our experimental evalu-
ation, we use YCSB-0.1.3 and we run WorkloadA, which is a heavy read-update workload
(read/update ratio: 60/40). In both environments, our workload consists of 10 million oper-
ations on 5 million rows with a total of 23.84GB of data after replication.

Results on Grid’5000

As shown in Figure 5.2, the total monetary cost decreases when degrading the consistency
level: the cost reduces from $138.76 — when the consistency level is set to ALL — to $71.72
when the consistency level is ONE (i.e., weak consistency reduces the cost by almost 48%).
This result was expected as lower consistency levels involve fewer replicas in the operations,
and thus maintaining low latency, less I/O requests to the storage devices, and less network
traffic in general (the runtimeof WorkloadA varies from 4 hours to 7 hours according the
consistency level). This cost reduction, however, comes at the cost of a significant increase
in the stale reads rate: as shown in Figure 5.2 79% of the reads are stale reads — only 21% of
the reads are fresh reads — when the consistency level is set to ONE.

5The price of Amazon EC2 large instance was $0.32 at the time of conducting these experiments and it is now
$0.26. However, as this price is applied to all consistency levels the difference in the pricing therefore doesn’t
affect our results and findings.

70 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

($) Cost Fresh Reads
0

20

40

60

80

100

P
e
rc

e
n

ti
le

 (
%

)

 ALL

 Quorum

 TWO

 ONE

Figure 5.2: Monetary Cost and Fresh reads rate on Grid’5000

ONE TWO Quorum ALL

0.01

0.1

1

10

100

P
e
rc

e
n

ti
le

 (
%

)

 Network Cost
 Storage Cost
 Instances Cost

Figure 5.3: Breakdown of the Monetary cost on Grid’5000 (log scale)

Furthermore, it is obvious that degrading the consistency level for Quorum (here the
number of replicas involved in an operation is 3 replicas) reduces the total cost by 13% while
maintaining a zero stale reads rate as shown in Figure 5.2. This is because the storage system
answers the read requests with the most up-to-date replica (fresh reads), which is always in
the replicas quorum. Moreover, degrading the consistency level to TWO reduces the total
monetary cost by almost 36%, but it adversary impacts the system consistency: only 61% of
the reads where fresh reads.

Observation 1 The total cost of geo-replicated services strongly depends on the consistency
level adopted: stronger consistency has higher a cost but a higher rate of fresh reads and
vice versa. However, as services differ in their tolerable stale reads and their access pattern
(within the same service: there is a significant diurnal variation in the access pattern and
the load levels), there is a need to define new metric to define the consistency level of an
application.

Figure 5.3 shows the breakdown of the total cost according to the contributed resources.
In general, the instances cost has the higher cost amongst other resources (storage and net-
work): it contributes to almost 90% of the service bill while the storage and network con-

5.2 – How Much does Storage Cost in the Cloud ? 71

tribute on average to only 9% and 0.4%, respectively. This is due to our experiments’ scale
— number of operations — and the cheap prices of resources (as shown in Table 5.1 the intra
communication is free of charges).

As shown in Figure 5.3, storage cost has a relatively lower contribution to the total cost for
stronger consistency (ALL and Quorum) compared to weaker consistency (ONE and TWO):
it contributes on average to 7.2% for the stronger one and 9% for the weaker one. The ALL
consistency level requires higher nbOps compared to Quorum while both have zero/low
readRepairIO and thus according to Formula (6) ALL has a relatively higher storage cost
contribution in contrast to Quorum (e.g., it is 7% for Quorum and 7.5% for ALL). More-
over, although the nbOps is smaller for ONE and TWO compared to ALL and Quorum, the
increasing number of readRepairIO increases the storage cost. Furthermore, as the cost of
readRepairIO is proportional to the rate of stale reads, ONE has higher storage cost contri-
bution in contrast to TWO.

In summary, the read repair function — ensuring that all outdated replicas become up to
date —plays a very important role in determining the cost of storage with different consis-
tency levels.

Network cost has also relatively a lower contribution to the total cost for stronger consistency
(ALL and Quorum) compared to weaker consistency (ONE and TWO): it contributes on
average to 0.175% for the stronger one and 0.275% for the smaller one. The ALL consistency
level requires higher interDcRep compared to Quorum (higher number of involved replicas
as well as Quorum always tends to answer the requests by involving the most close replicas
“within the same datacenter if possible") while both have zero/low IMechTraffic and thus
according to Formula 5.11 ALL has a relatively higher network cost contribution in contrast
to Quorum. Moreover, although the interDcRep is smaller in for (ONE and TWO) compared
to (ALL and Quorum) but the increasing size of IMechTraffic — due to the high rate of stale
reads — increases the network cost. Furthermore, as the cost of IMechTraffic is proportional
to the rate of stale reads, ONE has higher storage cost contribution in contrast to TWO.

Observation 2 Stronger consistency guarantees cause a higher contribution to instances
cost due to the high latency, and a relatively lower contribution to both the storage and
network cost as it avoids the extra cost caused by the read repair function.

Results on Amazon EC2

Figures 5.4 and 5.5 support our earlier findings and observations with Grid’5000. The total
cost variation in Amazon is lower than in Grid’5000, because of the more powerful machines
and the lower cross-sites latency.

As expected, and as shown in Figure 5.4, the total monetary cost decreases when degrad-
ing the consistency level. The cost reduces from $32.39 — when the consistency level is set to
ALL — to $23.23 when the consistency level is ONE (i.e., weak consistency reduces the cost
by almost 28%). This result was expected as lower consistency level involves fewer replicas
in the operations, and thus maintaining low latency, less I/O requests to the storage devices,
and less network traffic in general (the runtime of WorkloadA varies from 2 hours to 3 hours
and 33 minutes according to the consistency level). This cost reduction, however, comes at
the cost of a significant increase in the stale reads rate: as shown in Figure 5.4 79% of the

72 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

($) Cost Fresh Reads
0

20

40

60

80

100

P
e
rc

e
n

ti
le

 (
%

)

 ALL

 Quorum

 TWO

 ONE

Figure 5.4: Monetary Cost and Fresh reads rate on Amazon EC2

ONE TWO Quorum ALL

0.01

0.1

1

10

100

P
e
rc

e
n

ti
le

 (
%

)

 Network Cost
 Storage Cost
 Instances Cost

Figure 5.5: Breakdown of the Monetary cost on Amazon EC2 (log scale)

reads are stale reads — only 21% of the reads are fresh reads — when the consistency level
is set to ONE.

Moreover, the costs of the ONE and TWO levels are the same, although there were sig-
nificant variations in the running time (2 hours and 1 minutes for ONE and 2 hours and
33minutes for TWO) and also significant variations in the network traffic and storage re-
quests. This is because of the coarse-grained pricing units (per instance hour and per GB
storage and per 1 million operations, etc).

Figure 5.5 shows the breakdown of the total cost according to the contributed resources.
The instances cost has the higher cost amongst other resources (storage and network): it con-
tributes to almost 74% of the service bill while the storage and network contribute on average
to only 25.2% and 0.8%, respectively. This is due to our experiments’ scale — number of op-
erations — and the cheap prices of resources (as shown in Table 5.1 the intra communication
is free of charges). Moreover, the ratio of the cost of the instances, storage and network to
the total cost in Amazon EC2 is different from Grid’5000, because the shorter running time
(the high throughput and the powerful machines) which in turn makes the instances cost
smaller compared to other resources.

As shown in Figure 5.5, ALL has a relatively higher storage cost contribution in contrast to

5.3 – Bismar: Cost-Efficient Consistency Model 73

Quorum (e.g., it is 28% for ALL and 22% for Quorum). This is because the ALL consistency
level requires higher nbOps compared to Quorum while both have zero/low readRepairIO.
Moreover, although the nbOps is smaller for (ONE and TWO) compared to (ALL and Quo-
rum) but the increasing number of readRepairIO increases the storage cost. Furthermore, as
the cost of readRepairIO is proportional to the rate of stale reads, ONE has higher storage
cost contribution in contrast to TWO. The Network cost has also relatively a lower contri-
bution to the total cost for stronger consistency (ALL and Quorum) compared to weaker
consistency (ONE and TWO): it contributes on average to 0.7% for the stronger one and
0.9% for the smaller one. This cost varies from one consistency level to another according to
the number of involved replicas for the stronger consistencies and number of stale reads for
the weaker ones.

5.3 Bismar: Cost-Efficient Consistency Model

5.3.1 A metric: Consistency-Cost Efficiency

As discussed earlier, data consistency can strongly impact the financial cost of a certain ser-
vice (i.e., while stronger consistency with high latency implies higher monetary cost of oper-
ation as demonstrated in the previous section, the weaker consistency with high throughput
causes higher operational cost because of the high rate of stale rate). Consequently, monetary
cost should be considered when evaluating the consistency in the cloud [82].

As Cloud Computing is an economy-driven distributed system where monetary cost is
explicate and measurable metric [127], we argue that the consistency-cost trade-off can be
easily exposed in the cloud. Therefore, we define a new metric — consistency-cost efficiency
— that exposes the tight relation between the degree of achieved consistency for a given
monetary cost. Our goal is to define a general yet accurate metric to evaluate consistency
and thus using this metric as an optimization metric for cloud systems. Accordingly we
define the consistency-cost efficiency as the ratio of consistency, measured by the rate of
fresh reads, to the relative consistency cost as shown in Formula 5.16.

Consistency-Cost Efficiency =
Consistency(cl)

Costrel(cl)
(5.16)

Where Consistency(cl) = 1− stale reads rate and Costrel is the relative consistency cost
with respect to the strong consistency and given by Formula 5.17.

Costrel(cl) =
Cost(cl)

Cost(cl_all)
(5.17)

It is important to mention that our metric is designed and can only be applied when
strong consistency is not required by an application: we can consider our metric as a system
optimization for eventual consistency (i.e., tune the consistency to reduce the monetary cost
without violating the application’s requirements of fresh read rate).

5.3.2 Bismar

We design and implement our approach with the following goals:

74 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

Extendable consistency-cost efficiency. Our solution aims at providing consistency guar-
antees while reducing the monetary cost. Therefore, we propose to use the consistency-
cost efficiency metric as an optimization metric: simply by selecting the consistency
level with maximum consistency-cost efficiency. Moreover, to meet the diversity of
applications requirements (e.g., cost constraint and fresh reads rate constraint), our so-
lution can be easily extended to enable consistency-cost efficiency while favoring either
cost or consistency.

Self-adaptive. With the ever–growing diversity in the access patterns of cloud applications
along with the unpredictable diurnal/monthly changes in services loads, it is impor-
tant to provide a self-adaptive approach that transparently scales the consistency level
up/down at runtime without any human interaction. Therefore, our approach em-
braces an estimation model for consistency-cost efficiency that could be achieved with
different consistency levels: at runtime, the application’s access pattern and network
latency are fed to the consistency probabilistic estimation model (we have extended
the model in Chapter 4 as will be explained later in this section) in order to estimate
the rate of stale data that could be read in the storage system. Furthermore, we use the
same information (e.g., access pattern and network latency) along with the predicted
stale read rate (i.e., to estimate the number of stale reads) to compute the monetary
cost.

Independent of pricing schemes. Our solution targets public cloud and is not limited to
any cloud provider in terms of provided services or pricing schemes. The fine-grained
monetary cost analysis that is used for cost estimation can be easily adopted to different
services and pricing.

Independent of cloud storage systems. Since our solution is implemented as a separate
layer at the top of the cloud storage system, it does not impose any modifications to the
cloud system code. Our approach, therefore, can be applied to different cloud storage
systems that are featured with flexible consistency rules.

Consistency Probabilistic Estimation.

In the previous chapter, we introduced an estimation of the stale reads rate in the system
by means of probabilistic computations. This estimation model requires basic knowledge of
the application access pattern and of the storage system network latency. Network latency
in this case is of high importance, since it is the determinant of the updates propagation time
to other replicas. The access pattern, which includes read rates and write rates is a key factor
to determine consistency requirements in the storage system.

The probability of a stale read Pr(staleRd), assuming that writes are performed with a
consistency level that involves only one replica, is given by Formula 5.18 where r f is the
replication factor, and Tp is the average time to propagate an update to other replicas.

Pr(staleRd) =
(r f − 1)(1− e−λrTp)(1 + λrλw)

r f λrλw
(5.18)

Given that when the storage system supports multiple consistency levels, the consistency
level for read and write operations (clr and clw respectively) may vary with time. Accord-

5.4 – Experimental Evaluation 75

ingly, we extend the probability model in Formula 5.18 to consider all the consistency levels
for write and read operations that are smaller or equal to the Quorum level, where a Quorum
is computed as: b replication f actor

2 + 1c. This probability is given in Formula 5.19.

Pr(staleRd) =
(r f − (clw + clr − 1))(1− e−λrTp)(1 + λrλw)

r f λrλw
(5.19)

Efficiency-aware algorithm.

Many applications do not strictly require strong consistency: a consistency optimization
solution, therefore, can be introduced to improve system throughput, latency and monetary
cost. To achieve this goal we consider our metric as an optimization metric as shown in the
following algorithm.

Algorithm 2: Cost–Efficient Consistency

while true do
for cl ∈ CLs do

Compute Costrel(cl) Compute Consistency(cl)
Compute Consistency(cl)/Costrel(cl)

end
Choose cl∈ CLs for Max[Consistency(cl)/Cost(cl)]

end

At runtime, our system feeds the efficiency-aware algorithm with data related to the sys-
tem read/write rates along with the network latency. These data are used by the consistency
probabilistic estimation model to compute the expected achieved fresh reads when using
different consistency levels. The relative monetary cost is also computed according to the
system configuration and the stale read estimation. So the algorithm Algorithm 2 selects
the consistency level that offers the most equitable consistency–cost tradeoff (the maximum
consistency-cost efficiency value).

5.4 Experimental Evaluation

We have built our approach as a separate layer on top of Apache Cassandra-1.0.2 [85]. The
core of this layer consists of two modules. Both modules were implemented in Python 2.7.
The monitoring module collects relevant metrics (data) needed for our approach of the storage
system’s information. The data is further communicated to the dynamic consistency module.
An estimation of consistency-cost efficiency is computed — according to the estimated stale
reads rate and the monetary cost (instance, storage and network cost)— and then compared
in order to provide a cost efficient consistency level for the running application at that point
of time. Later in this section, we present our detailed evaluation of our consistency-cost effi-
ciency metric and the Bismar prototype using Cassandra on Grid’5000 testbed. We also use
YCSB to run WorkloadA (we have used the same testbed and WorkloadA described in Sec-
tion 5.2.3). In order to present the dynamicity of the system (i.e., the variation of throughput

76 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

Fresh Reads Rate

C
o

n
s
is

te
n

c
y
-C

o
s
t
E

ff
ic

ie
n

c
y

Figure 5.6: Consistency–Cost–Efficiency Effectiveness

and the read/write rates during the runtime), we ran the workload, varying the number of
threads starting with 1 thread, then, 50, 20, 7 and finally, 30 threads.

5.4.1 Consistency–Cost Efficiency

In order to validate our metric, we collect samples when running the same workload (with
different consistency levels), varying the number of client threads, and thus exhibiting dif-
ferent access patterns. Figure 5.6 shows the results where each point represents a different
access pattern. Higher consistency-cost efficiency values are associated with high rates of
fresh reads (around 80%). This indicates the effectiveness of our metric: it is designed to
achieve the best price without violating the consistency (we consider the 80% fresh reads as
acceptable consistency).

5.4.2 Monetary Cost

Figure 5.7 shows the monetary costs of running the workload with the three static consis-
tencies (ONE, TWO and Quorum) and with our dynamic adaptive approach. As expected,
ONE exhibits the lowest monetary cost but at the cost of fresh reads. Our experiments also
show some interesting results: Bismar achieves lower cost in contrast to the consistency level
TWO. Since Bismar always selects the consistency level with the highest consistency-cost ef-
ficiency to adopt to the workload dynamicity, Bismar adopts the consistency level ONE for
almost 70% of its running time while it adopts the consistency level Quorum for 30% of its
running time as shown in Figure 5.8. As a result, the cost reduction when running with ONE
overcomes the cost increase when running with Quorum. Since Bismar targets applications
that do not require strong consistency, we consider Bismar as an approach for optimizing
eventual consistency on cloud platforms. It improves the monetary cost of services while
maintaining acceptable rate of fresh reads. It is also interesting to compare the cost reduc-
tion and performance improvement by Bismar in contrast to the Quorum consistency level.

5.4 – Experimental Evaluation 77

ONE TWO Quorum Bismar
0

100

200

300

400

500

$
 C

o
s
t

Figure 5.7: Bismar : Monetary Cost

0.1 0.2 0.5 1.0 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Consistency-Cost Efficiency

C
D
F

ONE

TWO

Quorum

Figure 5.8: Consistency–Cost–Efficiency Distribution

78 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

ONE TWO Quorum Bismar
0

10

20

30

40

50

60

70

S
ta

le
n

e
s

s
 R

a
te

Figure 5.9: Bismar : Staleness

ONE TWO Quorum Bismar

0.01

0.1

1

10

100

P
e
rc

e
n

ti
le

 (
%

)

 Network Cost
 Storage Cost
 Instances Cost

Figure 5.10: Bismar : Cost breakdown

As shown in Figure 5.7, Bismar reduces the monetary cost by almost 31.5% in contrast to
Quorum level (From $456 to $312). The cost reduction is mainly due to the performance
improvements (Bismar improves the overall response time by almost 32.2%).

5.4.3 Staleness vs. monetary cost

Figure 5.9 shows the stale reads rates caused by different consistency approaches. It is clear
that static levels ONE and TWO produce higher stale reads rate: 61% of the reads where on
stale data with ONE and 36% with TWO. Moreover, the Quorum consistency level returns
always up-to-date data (i.e., stale reads rate is 0%) because at least one replica with the
freshest data should be in the Quorum. Bismar however, returns very small portion of stale
reads (only 3%), but with very important money saving (31.55% cost reduction compared to
Quorum). The 3% stale reads is considerably reasonable for many applications.

5.4.4 Zoom on resource cost in Bismar.

Figure 5.10 shows the breakdown of the total cost according to the contributed resources for
different consistency levels and Bismar. As shown and discussed earlier in Section 5.2.3, the

5.5 – Discussion 79

instance portion of the total cost increases with upgrading consistency while the portion of
both the storage and network costs increase with degrading the consistency level. However,
the aforementioned observation is also applied on Bismar: comparing Bismar against Quo-
rum, we notice that instance cost portion in Bismar is lower than in Quorum. Furthermore,
we observe that the portion of both the storage and network costs in Bismar is higher than
in Quorum. This can explain why the cost reduction was only 31.5% while the performance
improvement was 32.2%: because of the adversary impacts of the storage and network costs
in Bismar. Moreover, we observe that the portion of both the storage and network costs in
Bismar is higher than in all static consistency schemes, because Bismar combines both the
high number of requests when adopting a higher consistency level and also read repair cost
when stale reads is detected when Bismar adopts lower consistency level.

5.5 Discussion

With the explosive growth of data size and availability requirements of services in the cloud
along with the tremendous increase in users accessing theses services, geographically dis-
tributed replication has become a necessity in the cloud storage [63][40][48]. At such scale,
the strong consistency suffers of high latency and thus violating both the performance and
availability requirements. Cloud storage is therefore evolving towards eventual consistency.
Eventual consistency has been extensively exploited in literature and commercial products
such as Dynamo [49] in Amazon S3 [13] and Amazon DynamoDB [7], Cassandra [85] in
Facebook [59] and Yahoo! PNUTS [44] in Yahoo!. While the most of the work in literature
have been dedicated to either measuring the actual provided consistency in cloud storage
platforms [126, 17, 29], or on adaptive consistency tuning in cloud storage systems [82, 111,
128, 87] in order to meet the consistency requirements of applications and reduce the con-
sistency violation. Despite our work being focused on the monetary cost, a key difference
between our work and their work is that we are seeking an adaptive consistency approach,
which is at the same time cost efficient and does not violate the applications needs.

A closely related work on improving the monetary cost of consistency in the cloud is [82].
Kraska et al. propose consistency rationing: an automatic approach that adapts the level of
consistency at runtime considering the performance and monetary cost. The authors de-
fine consistency levels at data level (i.e., categorizes the data into three types and provides a
different consistency treatment for each category). Consistency rationing at data level may
incur additional meta data management overhead when the data size is large, our work
therefore is at a transaction level: our adaptive tuning approach chooses the number of repli-
cations involved in an operation considering the best trade-off between the consistency level
and monetary cost. The results discussed in our work complement Kraska’s work: monetary
cost-oriented consistency approach at transaction levels to complement their work at data
level.

With respect to monetary cost in cloud systems, a number of studies [104, 50] have been
dedicated to measure the cost of adopting the pay-as-you-go cloud in terms of monetary
cost, performance, and availability. Some studies [127, 62, 76] have reported on the cost
variations and fairness in the cloud. Many recent studies concentrate on monetary cost im-
provements of cloud services through reducing the virtualization interference [77], using
spot instance or levering the public cloud using free resources such as desktop grid [42][89].

80 Chapter 5 – Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud

In contrast, this work investigates the interplay between economic issues and the consistency
design and implementation.

5.6 Summary

In this study, we investigate the monetary cost of consistency in the cloud. Our detailed
analysis and study has revealed a noticeable monetary cost variation when different consis-
tency levels are used. Strong consistency levels have a tendency to consume more resources
at increasing monetary costs while weaker levels reduce the monetary cost at an increasing
rate of stale reads. In order to fully understand the impact of the different consistency levels
on the monetary cost and the rate of fresh reads in the cloud, our consistency-cost efficiency
metric have demonstrated its proficiency. We have shown how this new metric reflects the
tight relation between the level of consistency used and the monetary cost in the cloud in
the form of a ratio that can be used in decision making. Moreover, and in order to deal with
the dynamicity of cloud workloads, our adaptive approach Bismar leverages this metric to
provide cost–efficient consistency. Our experimental evaluations on a large cluster of Cas-
sandra cloud storage have demonstrated that such an adaptive approach leads to important
cost cuts (up to 31%) at an acceptable consistency for this type of workloads.

81

Chapter 6
Consistency vs. Energy Consumption:

Analysis and Investigation of
Consistency Management impact on

Energy Consumption

Contents
6.1 Motivation . 82
6.2 Insight into Consistency–Energy Consumption Tradeoff 82

6.2.1 Tradeoff Practical View . 82
6.2.2 Read/Write Ratio Impact . 86
6.2.3 Nodes Bias in the Storage Cluster . 87

6.3 Adaptive Configuration of the Storage Cluster 89
6.3.1 Reconfiguration Approach . 89
6.3.2 Experimental Evaluation . 90

6.4 Discussion . 93
6.5 Summary . 94

AFTER addressing the impact of consistency management on performance (in Chap-
trer 3) and monetary cost (in Chapter 4), in this chapter we investigate its impact on
energy consumption in the cloud. Within today’ Big Data scales, the power man-

agement and the energy consumption in the datacenter are highly important issues. In this
context, we introduce a first study that focuses on exploring the energy consumption and the
power usage when different consistency models are used. Accordingly, we investigate how
to leverage such a study as to reduce the overall energy consumption of the storage cluster.

82
Chapter 6 – Consistency vs. Energy Consumption: Analysis and Investigation of

Consistency Management impact on Energy Consumption

6.1 Motivation

Energy consumption within data centers is increasing at alarming rates [55, 58, 47]. It is
reported that the power usage within the Facebook datacenter in Prineville has more than
doubled in one year [58] while Hamilton [47] has estimated that, in 2008, the power usage
of the servers and the cooling units has exceeded 40% of the total cost for data centers. As
a result, power management in data centers has become an extremely important issue. A
better management of power and energy is necessary in order to protect our environment,
as well as to reduce the monetary cost. In the era of Big Data, a huge part of the datacenter
activity is related to data-intensive applications. Therefore, optimizing energy consumption
within distributed storage systems is becoming a priority.

Nowadays storage systems provide novel designs and data structures in order to deal
with the data tsunami. In this context, as shown in Chapter 3, many modern storage sys-
tems trade consistency for better performance, availability and sometimes monetary cost as
presented in Chapter 5. This has resulted in various consistency models being introduced
and implemented. The impact of these consistency models, including strong and eventual
consistency, on performance and availability has been widely studied. However, no stud-
ies have focused on their impact on the very important matter of energy consumption, in
particular with today large scales.

In this study, our primary goal is to investigate and highlight the unexplored impact
of consistency management on energy consumption. Accordingly, we conduct series of ex-
tensive evaluations in order to analyze the power usage patterns, and to investigate areas
that may be further explored as to save energy. In this context, the aim of our work can be
summarized in the two following goals:

Analysis of the impact of consistency levels on energy consumption. Investigate and
study how the two main popular consistency models: eventual consistency (with
its different levels) and strong consistency influence the energy consumption of a
distributed storage system. The study focuses on the investigation of the power usage,
the provided performance, and the resource usage exhibited with each model.

Investigation of adaptive configurations to save energy with regard to consistency. The
second goal is to leverage the analysis study of consistency impact on energy con-
sumption as to introduce best practices and storage cluster configurations that result
in energy savings.

6.2 Insight into Consistency–Energy Consumption Tradeoff

In this first step, we investigate, experimentally, the tradeoff between consistency and en-
ergy consumption. Accordingly, further analysis is provided as to build in-depth picture of
consistency models impact on the energy consumption of the storage cluster.

6.2.1 Tradeoff Practical View

Experimental Tools. First, we present the different tools and the micro benchmark used
in our experimental evaluation.

6.2 – Insight into Consistency–Energy Consumption Tradeoff 83

YCSB. As previously presented in Chapters 4 and 5, The Yahoo! Cloud Serving Benchmark
(YCSB) [137] is an ideal micro–benchmark that exhibits real cloud features and workloads.
Moreover, YCSB is already adapted to be used with multiple open–source cloud storage
solutions, including Apache Cassandra. In this experimental evaluation, we use YCSB-0.1.4
with a slightly–modified Java client (as to tune the consistency level) that interacts directly
with the Cassandra Cluster.

Dstat: Versatile resource statistics tool. Dstat [52] is a versatile tool for monitoring resource us-
age of the system. Dstat replaced multiple other tools, and allows therefore the monitoring
of various resources including CPU, Memory, Disk, Network among others. In our experi-
ments, we use Dstat, mainly, to monitor the CPU usage and the memory usage within the
storage cluster nodes.

PDU: Power Distribution Unit. A PDU is a hardware device that distributes electrical power
within a rack or a cluster to the different computing nodes, networking devices and poten-
tially other hardware equipment. Moreover, PDUs keep track of the distributed power to the
different nodes and allow the monitoring of power usage. In this context, we use PDUs as
power monitoring devices where the monitoring controllers use the Simple Network Man-
agement Protocol (SNMP) [39].

Experimental Setup. Our experiment sets have been conducted on the French Grid and
Cloud testbed Grid’5000 [79]. Grid’5000 federates 10 sites in France and Luxembourg with a
total number of cores that exceeds 8000. We deployed Cassandra on 39 nodes on the Graphene
cluster in the Nancy site. The Graphene cluster consists of 144 nodes. However, only 40
nodes are attached to PDUs. Every node is equipped with a 320 GB disk space, 16 GB of
memory size, and 4-cores Intel Xeon CPUs. The nodes are connected via Gigabyte Ethernet.
Two types of PDUs are installed. The first type is an EATON PDU (from the EATON cor-
poration [54]) that insures the power distribution to 40 nodes in the Graphene cluster. The
remaining PDUs are 2 APC PDUs (provided by APC [24]). Every APC PDU consists of 20
outlets each connected to a computing node, thus allowing power measurements node by
node.

In our experiments, we have used Apache Cassandra-1.1.4 with a replication factor of 5.
As introduced in Chapter 3, Cassandra is a very popular system with a versatile consistency
usage and efficient memory usage that fits our case study. We have initially run YCSB to load
2 Million keys with roughly 10 GB of data after replication. We have run a reads–updates–
heavy workload that consists of 20 Million operations with a read/update ratio equals to
60/40. Moreover, we have run the workload with three values of client threads number: 20,
70, and 100.

Energy Consumption Evaluation

Figure 6.1 shows the energy consumption when variating the consistency level: One (ba-
sic eventual consistency), Quorum (quorum–based eventual consistency), and All (strong
consistency). The main observation is that energy consumption increases when increasing
the consistency level demonstrating the existence of an inevitable consistency–energy saving
tradeoff. For the different numbers of threads (20, 70, and 100), the consistency level One
consumes significantly less energy than the Quorum-based level and the strong consistency

84
Chapter 6 – Consistency vs. Energy Consumption: Analysis and Investigation of

Consistency Management impact on Energy Consumption

 0

 1

 2

 3

 4

 5

 6

 7

2
0
 th

re
a
d
s

7
0
 th

re
a
d
s

1
0
0
 th

re
a
d
s

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

M
e
g

a
J
o

u
le

s
)

One

Quorum

All

Figure 6.1: Energy Consumption with various consistency levels

(the All level). This confirms our expectations, since the weaker consistency levels use less
resource for a given operation –involving smaller number of replicas– than the stronger con-
sistency levels, and have a performance edge that reduces the execution time. For instance,
when the number of client threads is 70, the One level saves up to 62% of energy compared to
the strong level (with its synchronous replication). An additional observation is that the en-
ergy consumption decreases when the number of client threads increases for all consistency
levels. This is explained by the fact that increasing the number of client threads enhances
the throughput (the performance) of the storage system (Cassandra). Therefore, executing
the same workload with an enhanced performance results in a shorter runtime and conse-
quently reduces the energy consumption.

Energy Savings, Data Staleness, and Performance Gains

Besides the energy consumption of different consistency levels, and for fair evaluation, we
highlight both the level of consistency guaranteed (using the estimation of stale reads rate)
and the performance provided. Energy consumption is a very important metric in nowa-
days data centers. In this context, it should be considered when managing consistency. In
Figures 6.2(a), 6.2(b), and 6.2(c) we show the energy saving, the stale read rate, and the per-
formance gain of the two levels One and Quorum when the number of client threads is 100,
70, and 20 respectively. With 100 and 70 client threads, the energy saving of the One level
exceeds 57% and 62%, respectively in comparison with strong consistency. These signifi-
cantly high saving rates are due to the usage of few resources (Only one replica is involved
in the operation) under heavy throughputs exhibited by the high number of client threads.
In contrast, the strong consistency level (All) involves all replicas in operations under heavy
accesses, which results in high energy consumptions. Similarly, the performance is respec-
tively 45% and 61% better since only one replica is involved with the One level generating
less traffic in the network and exposing higher throughput to the client. However, these en-
ergy savings come with an inconsistency overhead. The stale read rate of the One level is
significantly high (57% and 43% respectively). The main reason for these high rates is the ex-

6.2 – Insight into Consistency–Energy Consumption Tradeoff 85

 0

 20

 40

 60

 80

 100

O
ne

Q
uorum

P
e

rc
e

n
ti

le

Energy Saving
Stale Read Rate

Performance Gain

(a) Gains with 100 Client Threads

 0

 20

 40

 60

 80

 100

O
ne

Q
uorum

P
e

rc
e

n
ti

le

Energy Saving
Stale Read Rate

Performance Gain

(b) Gains with 70 Client Threads

 0

 20

 40

 60

 80

 100

O
ne

Q
uorum

P
e

rc
e

n
ti

le

Energy Saving

Stale Read Rate
Performance Gain

(c) Gains with 20 Client Threads

Figure 6.2: Energy saving, stale read rate, and performance gain of weak consistency levels

86
Chapter 6 – Consistency vs. Energy Consumption: Analysis and Investigation of

Consistency Management impact on Energy Consumption

 0

 1

 2

 3

 4

 5

 6

 7

O
ne

Q
uorum

A
ll

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

M
e
g

a
J
o

u
le

s
) Heavy-Updates

Heavy-Reads-Updates

Heavy-Reads

Figure 6.3: Read and Write rates impact on Energy consumption

hibited high read rate and the high write rate generated by multiple threads accessing data
at the same time. Alternatively, the Quorum-based level insures that all data read is fresh
since the replica with the latest update is always included in the quorum. Meanwhile, the
quorum level exhibits 27% and 30% of energy savings when the number of client threads is
100 and 70, respectively.

When the number of client threads is relatively small (20 threads), the throughput in
terms of served operations per second is smaller. Figure 6.2(c) shows that in this case, the
energy saving is still significant (roughly 49%) while the rate of stale reads is relatively ac-
ceptable (21%) with the basic One level. The Quorum level provides higher consistency
guarantees (with 0% stale read rate) while reducing the energy consumption by 14% and
enhancing performance by 12%. The results show therefore that strong consistency comes
with high energy consumption (In addition to the performance overhead and the monetary
cost shown in Chapters 4 and 5). The general belief was that when performance and avail-
ability are not a priority, it is better to implement a strong consistency. However, using this
consistency model when it is not strictly needed might introduce a heavy impact related to
the energy consumption (in addition to the monetary cost) within the datacenter. Therefore,
applications for which update conflicts are efficiently handled (at the application or the sys-
tem level) can benefit from the Quorum level when the read rate and write are high; and the
One level when these rates are low in order to save energy without consistency violations.

6.2.2 Read/Write Ratio Impact

In this section, we focus on investigating the impact of read/write ratio. Figure 6.3 shows
the energy consumption —where the number of client threads equals to 70— of three differ-
ent workloads: the first one is an updates–heavy workload with a read/write ratio of 20/80,
the second is a reads–updates–heavy workload with a read/write ratio of 60/40, and the last
workload is a reads–heavy workload with a read/write ratio of (80/20). Surprisingly, we can
observe —independently of the selected consistency level— the updates–heavy workload is
the workload with the least energy consumption. Moreover, the reads–updates–heavy work-

6.2 – Insight into Consistency–Energy Consumption Tradeoff 87

load is the one with the highest consumption exceeding that of the reads–heavy workload.
In order to understand such unexpected results, we need to analyze the internal mecha-
nisms of the Cassandra storage system. Cassandra, much like many NoSQL data stores, is
optimized for write throughput. This is mainly because write operations are considered as
extremely important and should always be available at a low latency (For instance Ama-
zon Shop Cart should always be available for new purchases, otherwise, unavailability will
result in a loss of money). Therefore, write latency within Cassandra is very small since a
write success is issued when data is written to the log file and the memory (not the disk). In
this context, the small consumption of the updates–heavy workload is due to writes small
latency. Write latency is even smaller than the read latency. Data in Cassandra is written
to memtables in memory and flushed later to sstables that are written sequentially to disks.
The sstables might however contain data rows that diverge overtime. In order to handle
this issue, Cassandra implements a Compaction process in the background to merge ssta-
bles. This in turn, introduces extra latency when fetching data for read operations and thus
explains why reads–updates–heavy workload consumes more energy. In the worst–case
scenario, a reads–updates–heavy workload results in a more frequent compaction, because of
the high number of update operations, and therefore it further increases the read latency in
comparison to the reads–heavy workload. When the updates number is high more data is
written to the sstables that grow high very fast at high probability of diverging rows (always
because of potential updates to the same rows) thus increasing the frequency of the com-
paction operation that affect the read operations (which are far more numerous compared to
the updates–heavy workload).

6.2.3 Nodes Bias in the Storage Cluster

In figures 6.4(a), 6.4(b), 6.4(c), we show the power usage, the CPU usage, and the memory
usage, respectively for the One, the Quorum, and the strong consistency levels with a reads–
updates–heavy workload and 70 client threads. The experimental results indicate that the
average power usage (the average of power usage of all nodes at all time periods) differs
slightly between the consistency levels. However, the gap between the max value and the
min value is relatively large, and largest with the One level, which is an indicator of a poten-
tial variation of power usage between nodes. The average of CPU usage on the other hand, is
higher with the stronger consistency levels. This is mainly because CPU is more active since
more replicas (and thus nodes) are involved during access operations. Moreover, there exists
a huge gap between the max usage and the min usage, in particular for the One level where
the min usage is roughly 8% (indicating that the node is almost idle) and the max value
is approximately 64%. This gap is higher with CPU usage than the power usage because
the latter has a steady consumption portion of roughly 44 Watt (even at the idle time). In
contrast to power and CPU usage, the memory usage is steady for the different consistency
levels with a minimal gap between the minimum usage and the maximum usage. These re-
sults are explained by the fact that Cassandra keeps data in memory in memtables. Therefore,
no matter the consistency level used or the number of times the node is solicited, the size of
data kept in memory is the same.

In order to further highlight the variation of power usage and CPU usage and the bias of
the cluster nodes, we compute the coefficient of variation for the average values per node. The
coefficient of variation CV is computed as CV = Standard Deviation

Mean . Figure 6.5 shows the CV for

88
Chapter 6 – Consistency vs. Energy Consumption: Analysis and Investigation of

Consistency Management impact on Energy Consumption

 0

 20

 40

 60

 80

 100

 120

O
ne

Q
uorum

A
ll

P
o

w
e

r
u

s
a

g
e

 (
W

a
tt

)

min

avg

max

(a) Power Usage

 0

 20

 40

 60

 80

 100

O
ne

Q
uorum

A
ll

C
P

U
 u

s
a

g
e

 (
%

)

min

avg

max

(b) CPU Usage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

O
ne

Q
uorum

A
ll

M
e

m
o

ry
 u

s
a

g
e

 (
B

y
te

 ?
)

min
avg

max

(c) Memory Usage

Figure 6.4: Minimum, Average, and Maximum usage of Power, CPU, and Memory of the
storage nodes

 0

 20

 40

 60

 80

 100

Pow
er usage

C
PU

 usage

M
em

ory usage

C
o

e
ff

ic
ie

n
t

o
f

v
a
ri

a
ti

o
n

 (
%

)

One

Quorum

All

Figure 6.5: Coefficient of Variation in resource usage of the storage nodes

6.3 – Adaptive Configuration of the Storage Cluster 89

power usage, CPU usage, and memory usage. The results clearly demonstrate the existence
of variation of power usage between the storage cluster nodes that is highest with lowest
consistency level. Access operations that use low consistency levels involve only a subset of
replicas, which results in a higher power usage for nodes hosting those replicas compared to
other nodes. With the strong consistency level, all replicas are involved in the data access op-
erations exhibiting a smaller coefficient of variation. The small observed variation is mainly
due to the non-uniformity of key distribution (even with an equal data range partitioning)
which is a known problem for systems based on distributed hash tables such as Cassandra.
However, the overall consumption variation of power usage remains smaller than the varia-
tion observed with the CPU usage (Variation exceeds 42% for the One level against roughly
28% for power variation). The difference is explained by the fact that in Cassandra stor-
age, much like many eventually–consistent storage systems, the nodes within the cluster are
peers and have equal responsibilities and host equal ranges of data (assuming a uniform
distribution of data keys). Therefore, nodes might consume extra power for cluster man-
agement and request routing even without being solicited for serving reads and writes from
their replicas. The memory usage on the other hand, exhibits no variation for the reasons
previously mentioned (nodes keep the same size of data in memory). The aforementioned
observations show clearly that energy is being wasted on nodes with little activity (For in-
stance one node has an average cpu usage of only 8% with the One consistency level). One
solution is to assign fewer tasks to the nodes —without powering them down to insure data
durability and persistence — that do not get frequent requests for their hosted replicas. In
the next section, we investigate the possibility of avoiding such situations.

6.3 Adaptive Configuration of the Storage Cluster

6.3.1 Reconfiguration Approach

The results presented in the previous section show a variation in CPU usage and power
usage between the different nodes of the storage cluster, in particular with low consistency
levels. As previously explained, the problem is caused by treating all the nodes as equals
while not all of them are involved in access operations resulting in energy waste on inactive
nodes. In order to overcome this situation, we propose a new cluster configuration of the
storage cluster. We divide the storage nodes into two pools: the warm pool and the cold pool.

The warm pool. This pool includes the cluster nodes that are most active and highly con-
suming. Nodes within the warm pool are assigned with more responsibilities and
larger data ranges to host as shown in Figure 6.6. Data partitioning in this case is re-
configured in order for warm nodes to be responsible of larger number of keys. In Cas-
sandra, this is accomplished by assigning more tokens in the ring to these nodes. More-
over, the warm nodes are exclusively responsible of handling client requests. Client re-
quests are not directed to nodes within the cold pool. Upon a request arrival, a warm
node will determine which node hosts data for the requested key. Since larger data
ranges are assigned to warm nodes, the probability that the data–hosting node will fall
within the warm pool is high.

The cold pool. In contrast to the warm pool, the cold pool includes nodes that are not highly
active. Therefore, in this configuration, we put those nodes on a low consumption

90
Chapter 6 – Consistency vs. Energy Consumption: Analysis and Investigation of

Consistency Management impact on Energy Consumption

Figure 6.6: Data Distribution for warm/cold Pools: warm nodes are assigned with more
tasks and larger data ranges than cold nodes

mode (for instance using DVFS Dynamic Voltage and Frequency Scaling [117] technique
to lower the CPU frequency of these nodes due to the low usage) and charge them with
minimal tasks. Therefore, data ranges assigned to the cold pool are smaller in order
to reduce their solicitation as shown in Figure 6.6. Nodes in this case, are involved in
operations when data fall in their (small) ranges, to respond to other replicas request
with strong consistency levels, and with internal mechanisms of the storage system
(Read Repair mechanism, and the Gossip protocol for Cassandra). As a result, with
eventual consistency, the probability that the request will be served exclusively within
the warm pool is high, especially when data keys are created carefully (in an uniform
manner).

This configuration of Warm and cold pools should be dynamic and adaptively reconfig-
ured. Cold nodes could join the warm pool during peak load times and warm nodes could
join the cold pool during non–busy periods. Moreover, the reconfiguration must consider
the dominating consistency level used in the workload to adapt properly. The low levels
introduce more variation between the nodes than the strong ones and provide better per-
formance. As a future plan, we intend to build an adaptive reconfiguration approach that
dynamically readapts the warm and the cold pool sizes to efficiently serve data while reduc-
ing the energy consumption.

6.3.2 Experimental Evaluation

Setup and Storage Configurations. In order to investigate the cluster reconfiguration im-
pact on energy consumption, we have run a reads–updates–heavy workload (with a read-
/write ratio of 60/40) and 70 client threads. Moreover, we have used four storage cluster
configurations where every node in the warm pool is assigned twice the size of data range
assigned to a node in the cold pool:

6.3 – Adaptive Configuration of the Storage Cluster 91

 0

 5

 10

 15

 20

O
ne

Q
uorum

A
ll

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

M
e

g
a

J
o

u
le

s
)

balanced(Native)

warm/cold

mostly warm

mostly cold

(a) Energy Consumption

 62

 64

 66

 68

 70

 72

 74

 76

 78

O
ne

Q
uorum

A
ll

A
v

e
ra

g
e

 p
o

w
e

r
u

s
a

g
e

 (
W

a
tt

)

balanced(Native)

warm/cold

mostly warm

mostly cold

(b) Average Power Usage

Figure 6.7: Energy consumption and average power usage of different configurations

Balanced. This is the native configuration with one pool of nodes that share the same tasks
and host the same data size.

Warm/cold. This configuration divides the nodes set into two equal subsets one assigned to
the warm pool and the other to the cold pool.

Mostly warm. 2/3 of nodes are assigned to the warm pool within this configuration and
only the remaining 1/3 of nodes is assigned to the cold pool.

Mostly cold. 2/3 of nodes belong to the cold pool while only 1/3 of nodes belong to the
warm pool.

Energy Consumption and Power Usage Evaluation. Figures 6.7(a) and 6.7(b) show the
overall energy consumption, and the average power usage, respectively, of our applied four
configurations. Both the energy consumption and average power usage are lowest when
the warm and the cold pools are of equal size (warm/cold configuration) with eventual
consistency (The One and the Quorum consistency levels). Moreover, both the mostly warm
and the mostly cold configurations consume less energy than the balanced configuration.
This clearly shows that for eventual consistency a balanced configuration with a balanced
data distribution client requests is not the best solution to reduce the energy consumption.
Since only a subset of replicas is involved in access operations, some nodes are busier than
others. Therefore, energy is “wasted” on “lazy” nodes. The average power usage for the
mostly warm configuration is higher than the balanced one because of the high number of
nodes in the warm pool. However, the overall energy consumption is smaller because of
the performance gains (as shown in Figure 6.8(b)) that result in a smaller execution time.
Moreover, the average power consumption for both the mostly warm configuration and the
mostly cold configuration is higher than the average of warm/cold configuration, which
explains, in addition to the performance gains, why energy consumption is lower with this
configuration. In contrast to eventual consistency, strong consistency achieves, by far, lower
energy consumption when the cluster is balanced and where nodes share roughly the same
amount of data and tasks. Strong consistency dictates that all replicas must be involved in

92
Chapter 6 – Consistency vs. Energy Consumption: Analysis and Investigation of

Consistency Management impact on Energy Consumption

 0

 10

 20

 30

 40

 50

O
ne

Q
uorum

E
n

e
rg

y
 s

a
v

in
g

 (
%

)

warm/cold

mostly warm

mostly cold

(a) Energy savings of unbalanced configurations

 0

 10

 20

 30

 40

 50

O
ne

Q
uorum

P
e

rf
o

rm
a

n
c

e
 g

a
in

 (
%

)

warm/cold

mostly warm

mostly cold

(b) Performance gains of unbalanced configurations

 0

 20

 40

 60

 80

 100

O
n
e

S
ta

le
 r

e
a

d
s

 r
a

te
 (

%
)

balanced(Native)
warm/cold

mostly warm
mostly cold

(c) Stale read rate of the One consistency level

 0

 20

 40

 60

 80

 100

Energy Performance

lo
s

s
 (

%
)

warm/cold

mostly warm

mostly cold

(d) Energy and Performance loss with strong consis-
tency

Figure 6.8: Gains, stale read rate, and loss of consistency levels with different configurations

access operations. Therefore, a balanced configuration is considered as a one warm pool
where all the nodes are solicited either to serve the client requests directly or to perform an
action on its replica (send the data or the metadata for read operations or commit the update
for the write operations). On the other hand, the average power usage is higher with the
balanced configuration compared to the others. This is because of two reasons. First, for the
non-balanced configurations, nodes in the cold pool have a low power usage caused by the
drop of overall average of resource usage. Second, the performance loss (as it will be shown
in Figure 6.8(d)), in the form of throughput decrease, lowers the resource usage of the nodes,
which results in a smaller power usage. However, the performance drop results in a higher
execution time and thus, higher overall energy consumption.

Gains Analysis. In Figures 6.8(a), and 6.8(b), we show the energy savings and the per-
formance gains respectively, compared to the balanced configuration (for eventual consis-
tency). The configuration with equally–sized warm/cold pools achieves the highest savings
that reach up to 19% of the already low consumption when the level of consistency is One,
and up to 23% for the Quorum level. For the type of the workload applied, the configu-

6.4 – Discussion 93

ration where most of the nodes belong to the cold pool is the one with the lowest saving
(8% for the level One and only 3% for the level Quorum). Similarly, the performance gains
are highest with the equally divided pools configuration and lowest with the mostly cold
configuration. Moreover, Figure 6.8(c) shows the stale reads rate of all the configurations
with the consistency level One. Both energy savings of the mostly warm and the mostly
cold configurations come at the cost of adding a very small portion of stale reads to the one
of balanced configuration (4% for the mostly warm and 3% of the mostly cold). Interest-
ingly, the warm/cold configuration exhibits the lowest stale reads rate (41% vs. 43% for the
balanced configuration). Therefore, and for this type of workloads, the warm/cold config-
uration is the best choice for eventual consistency providing the highest energy saving, the
highest performance, and the lowest stale reads rate.

The best–fit configuration when adopting strong consistency is the balanced configura-
tion as shown earlier. In this context, Figure 6.8(d) shows both the energy waste and the
performance drop of the unbalanced configurations in comparison to the balanced one for
the strong consistency level. The configuration with equally–divided pools results in a huge
energy waste that exceeds 54% and performance drop of 55%. Similarly, the mostly cold con-
figuration causes an energy waste of roughly 50% and performance drop of 51%. Such losses
are caused primarily, by the low number of warm nodes (half nodes for the first and only a
third for the latter), which results in a performance drop thus, increasing the execution time.
On the other hand, the mostly warm configuration results in approximately 27% of energy
loss and 28% of performance drop. This demonstrates that for this type of workloads, the
best configuration when consistency is mostly strong is a balanced configuration.

From these results, we conclude that a self–adaptive reconfiguration is necessary to re-
duce the energy consumption related to storage. The self–adaptive approach must consider
the observed throughput of the storage system and the most used consistency level in the
workload. Accordingly, the sizes of the warm pool and the cold pool are computed.

6.4 Discussion

Multiple analysis studies related to consistency were conducted over the years [126, 17, 29].
Wada et al. [126] investigate the level of consistency provided by the commercial cloud stor-
age platforms. Accordingly, they analyze the correlation between the consistency provided
and both the performance and the cost. In [17], the authors study past workload executions
in order to verify consistency properties and the level of guarantees provided by the un-
derlying key/value store. In a similar approach, Bermbach et al. study consistency properties
within Amazon S3. The goal of this study is to investigate how old is stale data served within
S3 cloud storage.

Energy consumption in the datacenter is an issue of extremely high importance. In this
context, few approaches that attempt to reduce energy consumption for storage systems
(underlying file systems for Hadoop mostly) were proposed [81, 16, 86]. GreenHDFS [81]
is an energy-conserving variant of HDFS [69]. GreenHDFS divides the Hadoop cluster into
Hot and Cold zones where a zone temperature is defined by its power usage as well as the
performance requirements. Within GreenHDFS, data is classified in order to be placed in
either zone. The classification aim is to enlarge the idle time of servers within the cold zones
by assigning to them the least solicited data. Another technique that was proposed in or-

94
Chapter 6 – Consistency vs. Energy Consumption: Analysis and Investigation of

Consistency Management impact on Energy Consumption

der to reduce the energy consumption of a cluster–based file system is Rabbit [16]. Rabbit
introduces an efficient data layout as to provide ideal power-proportionality down to very
low minimum number of powered-up nodes. Therefore, during periods of low utilization,
a subset of nodes in the storage cluster can be powered down in order to save power. In a
different approach, Lang et Patel propose a technique for managing Hadoop clusters, named
the All-In Strategy (AIS) that consists in using all the cluster nodes to serve the workload.
Once the workload execution comes to an end, all the cluster nodes must be powered down.
The authors examine the Covering Set (CS) techniques that rely only on a subset of nodes in
the storage cluster to serve workloads while powering down the others and conclude that
AIS achieves higher energy savings than CS in most cases.

The energy consumption in the datacenter is becoming a pressing issue with many stud-
ies emphasizing its importance [55, 47]. However, few studies were dedicated to investi-
gate power and energy management within storage systems (that were mostly dedicated
to Hadoop). Moreover, no study –to our knowledge– addressed the impact of consistency
management on the energy consumption. In contrast to related work, we introduce a first
study that analyzes and shows how consistency can affect the energy consumption of the
storage system. Furthermore, we show how a simple practice such as adapting the con-
figuration of the storage cluster according to the consistency model can achieve significant
energy savings.

6.5 Summary

In the era of Big Data and with the continuous growth of the datacenter scale, energy con-
sumption has become a pressing factor in recent years. Similarly, consistency management
has become of even higher importance for storage systems that operate at massive scales. In
this study, we have highlighted, for the first time, the impact of consistency on energy con-
sumption in the datacenter. Therefore, we have shown by means of experimental evaluation
how the choice of consistency level affects the energy consumption of the storage cluster.
We have demonstrated that the energy consumption is much higher with strong consistency
levels. In contrast, the weakest consistency levels reduce, significantly, the energy consump-
tion but at the cost of high rates of inconsistency. Quorum–based levels are middle ground
consistency levels that save a reasonable amount of energy without tolerating stale reads.
We conclude that –when update conflicts are efficiently handled– the basic eventual consis-
tency is the best choice to save energy with just a small fraction of stale reads under light
accesses while quorum–based levels are a better choice under heavy accesses. In addition,
in our analysis, we have demonstrated the presence of bias in the storage cluster with even-
tual consistency levels. Thereafter, we have introduced a cluster reconfiguration into warm
and cold pools as an adaptive solution to further save energy with eventual consistency. Our
experimental evaluation has shown that such a solution leads to energy–saving, enhanced
performance, and a reduced the stale reads rate.

95

Chapter 7
Chameleon: Customized

Application-Specific Consistency by
means of Behavior Modeling

Contents
7.1 Motivation . 96
7.2 General Design . 97

7.2.1 Design Goals . 97
7.2.2 Use Cases . 98
7.2.3 Application Data Access Behavior Modeling 99
7.2.4 Rule-based Consistency-State Association 103
7.2.5 Prediction-Based Customized Consistency 108

7.3 Implementation and Experimental Evaluations 109
7.3.1 Implementation . 109
7.3.2 Model Evaluation: Clustering and Classification 110
7.3.3 Customized Consistency: Evaluation 114

7.4 Discussion . 117
7.5 Summary . 118

This work started in the context of a 2-month internship at the Polytech-
nic University of Madrid (UPM)

IN Chapters 4, 5, and 6, we have studied consistency management and its related trade-
offs in cloud storage systems. Accordingly, we have proposed self-adaptive solutions

96
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

that handle consistency efficiently providing consistency when necessary while enhanc-
ing the storage system performance, reducing its monetary cost, and consuming energy in
a more efficient way. However, these solutions are focused on the system side while having
little consideration for the application (only read and write rates for Harmony and Bismar)
and lacking the application semantics —except for Harmony that takes a small hint on the
application consistency requirements, that should be specified by the application adminis-
trator, as an input—. In this chapter, we focus on the application level as a complementary
work to our solutions at system level. The main target is to provide a big enclosing picture
of customized and automatized consistency management that considers all influencing fac-
tors such as performance, monetary cost, and energy consumption. Therefore, in this work,
Chameleon learns about the application behavior, captures its consistency requirements, and
efficiently handles consistency tradeoffs on the system side when necessary. The resulting
consistency management is exclusively specific to the application.

7.1 Motivation

Applications are different and so are their consistency requirements. A web shop application
for instance requires a stronger consistency. Reading stale data could, in many cases, lead
to serious consequences and a probable loss of client trust and/or money. On the other
hand, a social network application requires a less strict consistency as reading stale data
has less disastrous consequences. Understanding such requirements only at the level of the
storage system is not possible. Both applications may impact the system state in the same
manner at some points in time, for instance during holidays or high–sale seasons for the
web shop and during important events for the social media. However, and while observing
the same or similar storage system state, the consistency requirements can be completely
different depending on the application semantics. In this work, and in contrast to related
work, we focus on the application level with an aim at full automation. We argue that in
order to fully understand the applications and their consistency requirements, such a step is
necessary. Moreover, automation is of extremely high importance given the large scales and
the tremendous data volumes dealt with within today’s applications [122].

Many adaptive consistency models were proposed over the years such as our approach
Harmony in Chapter 4, and consistency rationing [82] (presented in Chapter 3). These ap-
proaches were mainly proposed in the purpose of dealing with dynamic workloads at the
system level. They rely, commonly, on the monitoring data of the accesses in the storage
system. Moreover, Harmony requires a small hint about consistency requirements (while
consistency rationing focuses more on the cost of consistency violations). In contrast, we
introduce Chamelon for a broader context —considering a wider range of workloads and
consistency policies— to operate at the application level –instead of the system–. Chameleon
therefore, identifies the behavior of the application (and subsequently identify when work-
loads exhibit dynamicity) in order to efficiently manage consistency. Moreover, consistency
requirements must be understood at the application level. Thereafter, when a dynamic pol-
icy such as Harmony is needed (for a given time period), the application tolerable stale rate
can be computed automatically and communicated to the consistency policy (Harmony).

Chameleon, based on machine learning techniques, models the application and subse-
quently provides customized consistency specific to that application. The modeling is an

7.2 – General Design 97

offline process that consists in several steps. First, multiple predefined access pattern met-
rics are collected based on application past data access traces. These metrics are collected per
time period. The chronological succession of time periods presents the application timeline.
This timeline is further processed by machine learning techniques in order to identify the
different states and states transitions of the application during its lifetime. Each state is then
automatically associated with an adequate consistency policy from a broad class of consis-
tency policies. The association is performed according to a set of specified input rules that
reflect precisely the application semantics. Thereafter, based on the offline built model, we
propose an online prediction algorithm that gives a prediction on the state and the associated
consistency policy for the next time period of the application.

7.2 General Design

7.2.1 Design Goals

In order to build our approach, we set three major design goals that Chameleon must satisfy:

Automated application behavior understanding. In order to fully capture the consistency
requirements of an application, it is very important to learn about its access behavior.
The behavior of an application is responsible, in no small part, of defining the consis-
tency needs. In general, the behavior of an application (such as Web services) changes
over time periods and thus, expresses a degree of load variability. In this context, the
behavior modeling of an application requires automation as it is extremely difficult
for humans to perform such a task given the scales of today’s Big Data applications
and the tremendous amount of information to process during their life cycles . There-
fore, our target is to provide the two following automatized features: a robust behavior
modeling of applications, and an online application behavior recognition.

Application semantics consideration. Understanding the application behavior is necessary
but not sufficient in order to behold the consistency requirements. The high-level se-
mantics of what the application need can only be provided by humans. For instance,
defining what are the situations for which reading stale data is harmless or indicating
whether update conflicts are managed (within the application or the storage system).
In this context, these information are critical in order to provide the desirable level of
consistency. Therefore, these application semantics should be provided in the form of
rules that help associate every specific behavior of the application with a consistency
policy. Hereafter, we propose mechanisms that make the task of rules setting and con-
sideration simple and efficient.

Customized consistency specific to the application. A wide range of Big Data applications
are in production nowadays. These applications, generally, operate on very wide scales
and have different behaviors as well as different consistency requirements. Therefore,
our goal is to exploit these differences by examining the application behavior in order
to provide adequate consistency policy that is fully specific to the application. Such
customized consistency allows the application to fulfill its target by providing the level
of consistency required in every time period while optimizing SLA objectives such
as performance, availability, economical cost, and energy consumption whenever it

98
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

is possible. In this context, the application selects the most appropriate consistency
policy whenever its current behavior changes.

7.2.2 Use Cases

Hereafter, we show few applications that express, in general, access behavior variability
(which is considered one of the main challenges of Big Data by SAS [31] as it was shown in
Chapter 2). In this context, we show how these applications can, potentially, benefit from
customized consistency.

Web Shop. A typical web shop that provides highly available services worldwide exhibits
high load variability. During the busy holidays periods (e.g. christmas holidays), the un-
derlying distributed storage or the database observes extremely heavy data accesses loads
as the sales grow very high. Similarly, high loads are expected during discount periods.
In contrast, the periods just after high–sale seasons are usually very slow resulting in very
small number of data accesses at the storage system level. The system can experience an
average load outside the aforementioned periods. Moreover, the data accesses may exhibit
different patterns considering the level of contention to keys, the number of successive reads,
the waiting time between two purchases of the same item etc. Our customized consistency
approach, Chameleon, is designed for this purpose of access pattern (state) recognition in or-
der to select the most pertinent consistency policy that satisfies the application requirements
avoiding undesirable forms of inconsistency. A web shop’ one–year lifetime can be divided
into 52 week-based time periods. Every time period exhibits an application state and is
assigned a consistency policy specific to that state.

Social Media. Social networks are typically worldwide services. Similar to Web shops,
social media can exhibit high levels of load variability. High loads are expected during im-
portant events and breaking news (for general-purpose social networks for instance) while
medium and low loads can be perceived when regular or no events are trending. More-
over, the load variability is location oriented. For instance, high loads –associated with a big
event– that are perceived in one country will not be necessarily perceived in other locations.
Therefore, data access patterns may vary in their loads but also in their behavior considering
contention, locality and so many other criteria. Customized consistency can be applied for
this type of applications to capture the states of the application in order to recognize access
patterns and locality-based behavior. Accordingly, Chameleon selects adequately the consis-
tency policy to adopt for a given time period. The application lifetime in this case can be a
year long and a time period length equals one day for instance.

Wikipedia. Wikipedia is a collaborative editing worldwide–available service. While
Wikipedia load variability is not comparable to the one of a web shop, it can still affect
the consistency requirements. Moreover, the contention of accesses to the same keys is an
important factor. Most of the time, contention is very low, mainly because of the large num-
ber of articles within Wikipedia covering a wide range of thematics. However, contention
may change abruptly with articles becoming suddenly popular regarding their relation with
recent breaking news or actuality events. Moreover, Wikipedia is a locality-based service.

7.2 – General Design 99

It is only normal that people would like to access articles written in their local languages
(or the English language). Customized consistency can therefore, recognize the data access
pattern in order to select the consistency policy considering Wikipedia tolerance for stale-
ness. Staleness can be tolerated to a certain degree as reading a stale article means missing
the last update to it, which is, in most times, not very important and consists of a line or
small information addition. Therefore, Wikipedia service administrator can just specify an
inconsistency window that should not be violated in order to preserve the desired quality of
service. For instance, setting this window to one hour can be fairly acceptable as Wikipedia
is not a news feed. In this case, when a client reads an article it is guaranteed that it encap-
sulates all the updates that have been issued more than one hour ago.

7.2.3 Application Data Access Behavior Modeling

The first step towards customized consistency is to build a model that expresses different
states and patterns of the application in order to facilitate the task of apprehending its con-
sistency requirements.

7.2.3.1 General Methodology

First, we introduce the global view of our methodology as to build an efficient application
behavior modeling approach that must be automated with a high efficiency. The model
will be leveraged in the next step as to provide insight into future consistency requirements
of the application. The modeling phase starts with identifying different application states.
Moreover, each state is associated with a consistency policy that is best fit. In addition to
state identification, the model must specify the state transitions of the application in order
to reflect its lifetime behavior. The behavior modeling process requires the provision of past
data access traces of an application as well as some pre-defined rules in advance.

In the following, the different steps of the offline model construction, as shown in Fig-
ure 7.1, are presented. These steps are fully automated.

Application timeline construction. In this phase, application data access traces are pro-
cessed in order to retrieve and compute a set of data access pattern metrics. These
metrics are computed by specific time periods. The output of this phase is the applica-
tion timeline where each time period of the timeline consists of a set of metric values.
The application timeline refers to an interval of time that characterizes the application.

Application states identification. After the construction of the application timeline, all the
time periods are processed using clustering technique as to identify the different states
exhibited by the application.

States classification. After the identification of the application states, an offline learning
process is performed. It consists in training a classifier based on the output dataset
of the clustering technique. As a result of this phase, an online classifier that can rec-
ognize the application state or pattern at a given time period is built.

Consistency-State association. In this part, an algorithm that associates with each applica-
tion state a consistency policy is introduced. This algorithm relies on defined rules and

100
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

First the timeline is constructed; then all time periods in the timeline are pro-
cessed by unsupervised learning mechanisms for states identification; after states
has been identified, states classification is performed.

Figure 7.1: Application behavior modeling

application-specific parameters that reflect high level insight into the application se-
mantics. Consistency policies include strong and eventual consistency policies, static
and dynamic policies, and local and geographical policies.

The resulting model can be represented as a directed graph G(V, E) as shown in Fig-
ure 7.2 where vertices in V represent states and the edges in E represent the transitions that
are chronological time successions as they are observed in the application timeline. The
choice of a directed graph as a data structure facilitates the model storage providing efficient
accesses to its different components. The computer representation of our model consists of
an object that encapsulates the four following components:

The online classifier. This is the result of the states classification phase. This classifier is able
to recognize the access pattern (the state) of the application for a given set of observed
attributes (metric values).

State–Probability map. This map contains for each state identified its probability computed
straightforwardly in the form of the occurrence number of the state by the number of
occurrences of all states (number of time periods) fraction.

State–Policy map. This map is computed by the state-policy association algorithm.

Transition set. This set contains all the transitions between states (as defined by both the
application timeline and states identification) with their respective ranks. The rank
of a transition is its appearance order in the application model as it can be deduced

7.2 – General Design 101

state1

state2

1

state4

4

state5

6

state3

2

3

5

Figure 7.2: Application model example represented by a directed graph G(V, E)

Table 7.1: Access pattern metrics
Metric Value
read_rate Number of reads divided by the length of the time period
write_rate Number of writes divided by the length of the time period
contention Average contention to one key
no_possible_stale Number of reads that may be potentially stale (depending on

staleness rule)
min_successive_reads Minimal number of successive reads to the same key
min_successive_writes Minimal number of successive writes to the same key
avg_successive_reads Average number of successive reads to the same key
avg_successive_writess Average number of successive writes to the same key
max_successive_reads Maximal number of successive reads to the same key
max_successive_writes Maximal number of successive writes to the same key
avg_wait Average waiting time between two operations
std_dev_wait Standard deviation of the waiting time between two operations
min_wait_2_writes Minimal waiting time between two writes to one key
avg_wait_2_writes Average waiting time found between two writes to the same key
local_access Local access from the same location or remote access

from both the chronological succession of time periods in the timeline and the results
of states identification. An additional transition from the state of the last time period
to the first is added with the highest rank.

7.2.3.2 Timeline Construction: Traces Processing

The application traces are converted to a standard format in order to be processed by our ap-
proach. The traces are organized by time periods and each time period is stored in a specific
file. Within every time period, metrics that exhibit the access pattern are extracted. These
metrics are shown in Table 7.1 and express the behavior of the application when accessing
data within the storage system.

102
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

These metrics characterize the access pattern and therefore, their values enable the cap-
turing of the application state. This in turn, provides an insight into the consistency re-
quirements. These metrics values are determinant to the states characterization, but to the
consistency policy-state association as well. Metrics, such as the read rate, the write rate,
and contention can help define the level of consistency strength needed. Similarly, the mean
waiting time and the standard deviation of waiting time between two operations express the
degree of dynamicity and variation exhibited by the application. On the other end, the min-
imal waiting time between two updates provides hints on the possibility of update conflicts.

At the end of this phase, the application timeline is built. It is composed of the chrono-
logical succession of time periods where every time period has specific access pattern metric
values.

7.2.3.3 Identification of Application States

States identification is one of the critical tasks in the model building process. In order to
achieve efficient states identification at large scale with full automation, we rely on machine
learning techniques that are able to process large datasets with relatively large number of
attributes. In this context, we construct a dataset from the application timeline. Every in-
stance represents a time period identified by a unique key, which is the timestamp of the
period start. The access pattern metrics represent in this case the instance attributes. Our
total number of attributes is 15. However, not all of these attributes may be relevant for all
types of applications and therefore might affect badly the quality of both the supervised and
unsupervised learning (ie. clustering and classification). In this context, we apply a feature
selection algorithm that ranks the attributes in order of their relevance. Consequently, the
unsupervised learning in the form of clustering is applied on the dataset with exclusively
relevant features in order to identify the application different states.

Feature Selection. In machine learning, sample data is processed in order to extract knowl-
edge that can be used for multiple aims. One of the most common objectives is to use this
knowledge in the purpose of making predictions about future data. In this context, the qual-
ity of the data sample used for training is critical to reach efficiency with learning algorithms.
Feature selection refers to the algorithms family that given the set of attributes selects a sub-
set of relevant features and eliminates the irrelevant and redundant data that may make the
knowledge discovery more difficult and cause overfitting problems [132].

In order to enhance the accuracy of our prediction model and avoid overfitting, we use
Recursive Feature Elimination (RFE) [68, 41]. RFE best–fit use cases include small and average
datasets with high dimensionality. Therefore, RFE is ideal for our model considering our
sample dimension and that the number of time periods in the application timeline is limited.
RFE is, commonly, used with Support Vector Machines (SVM) and was originally applied to
gene selection for cancer classification [68]. It helped scientists to discover novel information
on genetics that was constantly missed in the past when using other techniques.

Data Clustering. In this context, clustering is applied to automatically identify the appli-
cation states. Multiple clustering algorithms exist. However, for our model we seek an al-
gorithm that requires minimal information from the user. In particular, we have no assump-

7.2 – General Design 103

tions on the number of states (clusters), or their shapes that may be completely arbitrary. As
a result, common algorithms such as k-means [93] or Gaussian Mixture EM clustering [51]
show limitations over their applicability to our specific problem. Both algorithms can find
only linearly separable clusters while the first one requires the number of clusters in ad-
vance. However, at this stage we have minimal knowledge on the model and we do not
put any assumptions during its construction. One clustering algorithm that fits our require-
ments is density-based spatial clustering of applications with noise DBSCAN algorithm [56]. We
choose DBSCAN since it does not require the number of clusters but infers it implicitly in
the computation. Moreover, it can detect arbitrarily shaped clusters.

DBSCAN is a density-based algorithm. Clusters are formed based on density reachabil-
ity. Therefore, density variations are detected in order to form separated clusters of points.
All points in the same cluster are mutually density reachable directly or by transitivity. DB-
SCAN requires two parameters, the first one is the distance used to define density reachabil-
ity, and the second one is the minimum points that a cluster should encapsulate. Defining
the two parameters is known to be a difficult task in DBSCAN. In our model, the number of
minimum points in a cluster is one since one time period in the application timeline may ex-
hibit a state that is different from all other time periods. In contrast, defining a precise value
of the distance parameter is more difficult. We plan to propose a heuristic that computes a
near optimal value of this parameter as a future work.

7.2.3.4 State Classification

The next step in our model is to build an automated online classifier of application states. In
order to provide such a feature, we use supervised machine learning techniques. The classi-
fier utilizes a learning model that collects knowledge from an input sample offline in order to
provide data analysis and patterns recognition abilities that will be used for instance classi-
fication. Based on the states identified in the previous step, a learning sample will be passed
to the classifier. The learning sample consists of a set of time periods data, and for each
time period its state. Multiple types of classification techniques have been introduced. Two
of the most efficient ones are Neural Networks [94] and Support Vectors Machines [33, 46].
Support Vector Machines (SVM) learning models were first introduced in 1992, and gained
major popularity since. They are linear classifiers and outperform most of statistical and
learning techniques such as Neural Networks. In our model, we choose an SVM algorithm
mainly because of its efficiency with high dimensionality data. Unlike Neural Networks,
SVM techniques perform well with large datasets providing the necessary means to analyze
data and find separations efficiently at high dimensionality. SVM represents data in a set of
multidimensional space, then constructs a set of hyperplanes based on vectors in order to
separate data points.

7.2.4 Rule-based Consistency-State Association

The process of identifying the application states lacks the consistency context. Therefore,
states are identified based on access patterns that should be associated with the pertinent
consistency policy based on the application semantics. In this part, we propose an algorithm
that performs such an association.

104
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

7.2.4.1 Consistency Policies

Multiple consistency models were proposed over the years. Cloud storage systems usually
implement a unique and well defined consistency model per system. However in recent
years, as introduced in Chapter 3, multiple distributed storage systems that implement var-
ious models in order to provide different levels of consistency were introduced. Moreover,
these systems provide flexible APIs to the client in order to select the consistency level on
per operation basis.

In this work, we categorize a set of consistency policies considering the following prop-
erties:

• Strong policies vs. Eventual policies

• Static policies vs. Dynamic policies

• Local policies vs. Geographical policies

In this context, the following consistency policies are considered by the State–Policy as-
sociation algorithm:

Strong Consistency. This is the static strong level of consistency by means of synchronous
replication involving all the replicas in read and write operations in order to avoid any
form of inconsistency.

Eventual One Consistency. This is the basic level of static eventual consistency that involves
only one replica —mainly the fastest replica to respond— in read and write operations.

Eventual Quorum Consistency. This policy is a static eventual policy. The number of repli-
cas involved in the access operations is equal to b(number o f replicas

2) + 1c. Therefore, the
fastest replicas to respond are considered in this policy no matter their locations (e.g.
which datacenter, which rack etc.).

Eventual Local_Quorum Consistency. In this static eventual local policy, only a quorum of
replicas local to the accessed datacenter are considered in the read and write opera-
tions. Remote replicas (in other data centers) are not solicited in order to avoid high
network latencies between data centers.

Eventual Each_Quorum Consistency. In contrast to the previous one, this static eventual ge-
ographical policy considers local quorums in every datacenter for read and write oper-
ations.

Dynamic Performance Consistency. In this policy, the goal is to dynamically tune the con-
sistency level for dynamic workloads with a particular focus on improving perfor-
mance when possible. In our model, we use our approach Harmony, introduced in
Chapter 4, as the Dynamic Performance Consistency policy. Subsequently, the toler-
ated stale read rate of an application is computed automatically. Its value is equal
to 100 − undesirable stale reads

number o f reads × 100 where the undesirable stale reads can be computed
from the traces based on the input rules as it will be explained in the next section.

7.2 – General Design 105

Dynamic Cost Consistency. This is a dynamic policy that adaptively tunes the consistency
level as well, with the goal of reducing the monetary cost of using the infrastructure
(mainly cloud platforms) when possible. In our model, Bismar, introduced in Chapter
5, is the Dynamic Cost Consistency.

Dynamic Energy Consistency. In this dynamic policy, the adaptive selection of the consis-
tency level must take into account the impact on energy consumption. In the absence
of such a policy at the current time, we can either use Harmony or simply rely on the
storage system reconfiguration at runtime, as presented in Chapter 6, in order to re-
duce the consumption. As part of future work, we plan on implementing a consistency
policy where the main focus is to save energy when possible.

7.2.4.2 Input Rules

In order to reach a meaningful state-policy association, input information is required to be
provided by the application administrator. Moreover, the administrator has the choice to
either select one of the generic rules included in our model or implement its own specific
rule based on its application semantics. These rules are used in the model to flag situations
when staleness is not desired and may be harmful. Our model is provided with mainly two
generic rules. The first rule is named the stock rule. It defines the number of the “consuming”
updates to the same key per time period before flagging the successive reads as potentially
reading undesirable values. This rule is based on the example of stock variables in web shop
applications. As long as the value of such a variable is higher than a threshold value, the
exact value of the variable is not required in order to avoid product availability conflicts that
lead to anomalies. Therefore, stale data in this case is acceptable as it will not lead to the
purchase of unavailable products. The second rule, surnamed the inconsistency window rule,
is based on a provided inconsistency window value. The value of the inconsistency window
is used later to compute the number of potential stale reads. In addition, for systems that
are more tolerable for staleness, a second inconsistency window specific to the application
is introduced. Its value is the maximum staleness interval that should not be exceeded. For
instance, let consider the example of a social network where a given person friends should
be able to read his updates that were committed more than given period of time ago (e.g.
two minutes ago). The stale reads that exceed this value are considered as undesirable (since
they affect the quality of service for this case for instance). These two rules are provided in
the following XML format:

<rules>
<allowed_staleness>

<type> stock or icw </type>
<stock> <min> 50 </min> </stock> <!-- or -->
<inconsistency_window>

<native> storage_incon_window <native>
<tolerated> application_incon_window <tolerated>

</inconsistency_window> <!-- or -->
<flag> no or yes </flag>

</allowed_staleness>
</rules>

106
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

Additional rules are necessary as well. A rule that specifies whether the update conflicts
management is provided in the storage configuration or not is expected. If conflicts are not
handled, any potential conflict situation would automatically lead to the application of the
strong consistency policy. Moreover, the application administrator is required to specify
whether dynamic policies are allowed to be selected (if the specific conditions are met) or
not. When dynamic policies are allowed, a variation threshold and the focus of the dynamic
policy are required. The variation threshold will be compared to the standard deviation of
waiting times and therefore, can be specified as α × mean waiting time where 0 < α < 1.
These two rules are specified in the following XML format:

<rules>
<conflict_handling>

<flag> yes or no </flag>
</conflict_handling>

<allow_dynamic>
<flag> yes or no </flag>
<variation_threshold> value </variation_threshold>
<policy> performance or cost or energy </policy>

</allow_dynamic>
</rules>

7.2.4.3 State-Consistency Association Algorithm

Figure 7.3 shows the state-policy association algorithm in a decision tree-like form. This is
an offline algorithm. It takes as input the model with its identified states, the set of consis-
tency policies, and the XML file with the input parameters and rules. For every state, the
association algorithm aggregates metrics values from time periods that belong to that state.
The algorithm starts by checking both the existence of update conflicts and mechanisms to
handle them in order to exclude or select the strong consistency policy. In the absence of con-
flicts, eventual quorum-based consistency levels can guarantee strong form of consistency.
Therefore, the following step is to check the number of potential stale reads based on the pro-
vided staleness rule. Accordingly, either the basic eventual consistency level that involves
one replica is selected or further processing is required. In the latter case, the algorithm
checks whether staleness is allowed for the application. Subsequently, it selects Quorum-
based levels if staleness is not allowed. The Local_Quorum policy is chosen when accesses are
potentially all or in–most directed to their local data centers. In contrast, the Each_Quorum
policy is chosen for the non-local accesses (accesses to different data centers). On the other
hand, if staleness is allowed, the algorithm checks whether dynamic policies are allowed
as well. Hereafter, the dynamicity of the application workload is investigated based on the
observed standard deviation of waiting times between data access operations. According
to the variation threshold, the dynamic policy might be applied based on the desired opti-
mization focus (ie. performance, cost, or energy consumption). In the case where dynamic
policies are not allowed (by the application administrator), a default policy is selected. Since
in this case, staleness is allowed, we therefore choose the basic consistency level One as a
default policy.

7.2 – General Design 107

Figure 7.3: State-Consistency Association Algorithm

108
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

7.2.5 Prediction-Based Customized Consistency

Algorithm 3: Next State Prediction
Input: Model, stats
Output: State
currentState← Model.Classi f ier(stats)
if currentState successors set size = 0 then

nextState← de f aultState
else

if currentState successors set size = 1 then
nextState← currentState successor

else
nextState←
recPrediction(currentState, predecessor(currentState), successors(currentState))

end
end
Function recPrediction(state1, state2, successors)

Max ← random state in successors
tr ← Transition(state2, state1) rank
for state in successors do

if state rank < tr then
successors← successors− {state}

if State Probability > Max Probability then
Max ← State

end
if successors set size > 1 and predecessor(state2) != ∅ then

return recPrediction(state2, predecessor(state2), successors)
else

if successors set size = 0 or predecessor(state2) = ∅ then
return Max

else
return the successor in successors

end
end

end

After the offline model construction has been completed, we leverage the model as to
provide customized consistency for the running application. Henceforth, we provide an
online algorithm that at the end of every time period, and based on the model, gives a pre-
diction on the expected state that the application should exhibit for the next time period.
Accordingly, the consistency policy to adopt is chosen by a simple state-policy mapping.
The prediction mechanisms are shown in Algorithm 3. The algorithm requires the applica-
tion model and the current observed access pattern metrics (referred to as stats) collected
from the application logs. The model consists of 4 components: the Online state classifier, the
State–Probability map, the State–Policy map, and the Transition set. The algorithm starts by clas-
sifying the current state of the application. Once the current state determined by the online
classifier, its successor set in the application model is computed based on the transition set.

7.3 – Implementation and Experimental Evaluations 109

In the case where this set is empty, the state with the highest probability is selected. If on
the other hand, the set contains more than one successor, a recursive function recPrediction
is called. This function leverages the model in order to compute which state the application
is expected to transform to.

The recursive function recPrediction checks the transitions of the application to the cur-
rent state starting by the recent transition to the least recent. In this context, the states in the
successors set are either ruled out or conserved based on their ranks. Therefore, only states
that are expected after the succession of the states exhibited so far are not ruled out. The
recursive call traces the transitions from the recent to the old one until only one or no state
belongs to the successors set. In the case where the successor set is not empty nor include
only one element while the oldest transition has been reached, the state with the highest
probability is selected.

7.3 Implementation and Experimental Evaluations

In this section, we first describe the implementation of Chameleon. Secondly, we present
our experimental evaluation. The main goal is to demonstrate the quality of the modeling
behavior approach and to show the efficiency of Chameleon in adapting to the need of the
application at full automation, which is the goal we were seeking when designing it. In this
context, the recognition of the application behavior and its requirements is performed by the
online classifier (SVM), which is a black box to the human users.

7.3.1 Implementation

Chameleon targets a wide range of large-scale applications. These applications might be com-
pletely different. Moreover, their traces are potentially heterogeneous in both content and
formats. In order to deal with such a heterogeneity, Chameleon is designed to easily integrate
new data formats and to automatically deal with load variability. Chameleon implementation
is divided into two main parts: the traces parsing part, and the modeling and the online
prediction part.

Traces parsing and timeline construction. At the start of this phase, the application traces
(logs) are converted into a standard format. We define the standard format where each line
consists of the following values separated by one blank: timestamp of the operation, the key
of accessed data, the type of access operation, and, if possible to get this information, a flag to
indicate whether the geo–location of the client is local or not. This approach makes the integration
of any new application (and its traces) easy by just writing the corresponding converter to the
standard format. The traces in the standard format are processed by a Python built module.
This module divides the large traces log file into time periods based on the timestamps and
then stores every time period in a separate file. Afterwards, every time period file is loaded at
a time from the disk and then processed in order to efficiently use memory space. Hereafter,
all computed metrics values of each time period are stored in one file that represents the
application timeline.

110
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

Figure 7.4: Overview of Chameleon Implementation: The online algorithm relies on the
application model and the stats collected from client logs in order to select the adequate
consistency policy for the next time period

Modeling and online prediction. The second part of Chameleon implementation builds
the application model and the online prediction algorithm. This part is implemented in Java
where the application model is an object. Figure 7.4 shows our implementation. The model
component encapsulates the model data. The model is instantiated before runtime based on
the application timeline, the input rules file, and the set of consistency policies. At runtime,
every application client logs its access information. The data collector component collects the
necessary data from client logs and extracts the data access statistics to be sent to the online
algorithm component. The latter uses the knowledge acquired from the model component
in order to perform the prediction computations of the next consistency policy to use dur-
ing the next time period. The machine learning algorithms applied for state identification
and classification were implemented based on the Java Machine Learning Library (Java–ML)
[78]. Java–ML wraps over multiple other machine learning libraries in Java. The recursive
feature elimination RFE implementation was Java–ML native while the clustering algorithm
was wrapped over the DBSCAN implementation in Weka library [131] and the classification
algorithm was wrapped over SVM in LIBSVM library [88].

7.3.2 Model Evaluation: Clustering and Classification

Wikipedia Traces. In order to validate our modeling phase, we investigated available
traces of large-scale applications that fit our case study. A perfect use-case match is
Wikipedia [135]. Based on access traces collection and analysis of Wikipedia described
in [123], we use a traces sample collected in 1st of January 2008. The traces consisted of
roughly 9056528 operations and a total log file size of approximately 1 GB. The access traces
consisted of the timestamp of the operation occurrence, the page that was accessed, and the
type of the operation. Unfortunately, the information related to the client geographical loca-

7.3 – Implementation and Experimental Evaluations 111

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

n
u

m
b

e
r

o
f

c
lu

s
te

rs

distance parameter

DBSCAN with RFE

DBSCAN without RFE

number of time periods

Figure 7.5: Clustering of time periods with and without RFE

tion was not available. These traces were processed to extract relevant metrics (as described
in the modeling section) and construct the application timeline in order to perform experi-
mental evaluations. For the purpose of experimental evaluation, the length of a time period
is set to 100 seconds and the application timeline consists of 90 time periods.

Setup. The experimental sets to evaluate the offline modeling phase were conducted on
a Mac equipped with Intel Core-2-Duo CPU of 2,66 GHz frequency, memory size of 4 GB
and a 300 GB hard drive. The used operating system is Mac OS X 10.6. The Java Runtime
Environment version was 1.6.

Clustering Evaluation. In order to validate our model, we ran a set of experiments ori-
ented to evaluate the quality of the clustering algorithm DBSCAN used for states identifica-
tion as well as the quality of the classification with SVM.

We first start by analyzing the DBSCAN algorithm and its behavior when modifying the
input parameters, in particular the distance parameter since the minimal number of points
that a cluster should enclose has been fixed to one (as one application time period can exhibit
a behavior different from all others). Moreover, we compare the numbers of found clusters
every time with and without recursive feature elimination RFE. Figure 7.5 shows the vary-
ing number of the formed clusters when varying the distance parameter in the interval 0.10
to 1.05 for the Wikipedia sample timeline. The number of clusters increases when decreas-
ing the value of the distance parameter. The two clustering approaches with and without
RFE find a close number of clusters. This shows that the application of RFE preserves the
intuitive clustering results of DBSCAN, with all the features in the dataset considered, while
enhancing greatly the quality of classification as it will be demonstrated. With the very small
distance parameter value of 0.10, the number of found clusters for both approaches equals
that of the number of time periods (data instances). This makes the clustering ineffective and
the classification phase more difficult. Similarly, with the value of 1.05, the found number of
clusters is one for both approaches making the whole modeling process trivial. Moreover,
We can observe that with small distance parameter values, the clustering approach that is
not preceded with RFE forms more clusters. This is mainly, because of the recursive and

112
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1 1.2

p
re

d
ic

ti
o

n
 s

u
c

c
e

s
s

 r
a

te
 (

%
)

distance parameter

classification with RFE

classification without RFE

Figure 7.6: Accuracy of instance classification

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1 1.2

p
re

d
ic

ti
o

n
 s

u
c

c
e

s
s

 r
a

te
 (

%
)

distance parameter

classification with RFE

classification without RFE

Figure 7.7: Classification of new data instances: accuracy

trivial features not being eliminated. In addition, these features (attributes) will affect badly
the classification quality.

In order to analyze the impact of the two clustering approaches (with and without RFE)
on the classification process, we train our SVM algorithm with the clustered output data
of both approaches. After that, we classify every data instance in the Wikipedia timeline
with the two classifiers (with and without applying RFE). Subsequently, we compare the
predicted value by the classifier with the observed value from the clustering phase in or-
der to determine the prediction success rate. Figure 7.6 clearly and conclusively shows the
importance of the recursive feature elimination in the classification process. Clustering and
classification without RFE results in a very mediocre classifier with very small fraction of
successful predictions. In contrast, RFE makes the whole process very effective with 100%
fraction of successful predictions on the training data. However, the classifier in this latter
case might suffer from the overfitting to the data sample and may behave badly with out-
sider (new coming) data instances. Therefore, we conduct a set of experiments hereafter to
evaluate the classification quality independently of the input dataset.

7.3 – Implementation and Experimental Evaluations 113

 0

 20

 40

 60

 80

 100

 120

S
ta

te
-1

S
ta

te
-2

S
ta

te
-3

S
ta

te
-4

S
ta

te
-5

S
ta

te
-6

S
ta

te
-7

S
ta

te
-8

S
ta

te
-9

S
ta

te
-1

0

C
ro

s
s

 V
a

li
d

a
ti

o
n

 (
%

)

with RFE

without RFE

Figure 7.8: Cross–Validation of classification with different states

Cross–Validation. Recursive feature elimination RFE algorithm was applied mainly to en-
hance the quality of the classification. In order to evaluate the classification algorithm and to
check whether it suffers from the overfitting problem, we ran a cross–validation evaluation.
We divide the data resulting from the clustering phase into two sets. The first set that con-
tains randomly–selected fraction of two thirds of data instances used to train the classifier.
The second set contains the remaining data and is used for classification. Figure 7.7 shows
the prediction success rate of both approaches with and without RFE where the classified
data is different from the training data. As expected, the classifier without RFE performs ex-
tremely bad with very low, sometimes null, prediction success rates. In contrast, RFE–SVM
classifier achieves very high success rates (over 96%) when the distance parameter value
is greater than 0.55. Moreover, it performs reasonably well with relatively small distance
values such as 0.25 (over 56% success rate). However, the classification proved ineffective
with a distance of 0.10. The reason for such a behavior is the inefficiency of the clustering
algorithm with this distance value since all data instances are classified in distinct classes.
As part of a future plan, we intend to investigate the possibility of a heuristic that targets
the computation of the distance value. Such a heuristic should aim at computing a value
that provides high success rate while resulting in a number of clusters higher than a given
number (for instance α× number o f consistency policies).

Figure 7.8 shows the cross–validation for the different states of the application –observed
in the data sample– when the distance parameter in the clustering phase equals 0.55. The
cross–validation type used is K-fold cross-validation with k equals to 10. The 90 time periods
(instances) were classified correctly for the big majority of states of the classification with
RFE (Over 96% successfully classified for all states), which shows the robustness and the
precision of our model that is data set–independent. In contrast, classification without RFE
classifies instances at very low accuracy for few states and at high accuracy rates for others.
However, the poor success rate shown in Figure 7.7 is caused essentially by the poor classi-
fication with states 1 and 4. In particular, because the number of time periods that exhibit
these two states is significantly higher than others. Moreover, the successful cross-validation
with other states is, mainly, because of true negatives rather than true positives.

114
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

7.3.3 Customized Consistency: Evaluation

Experimental Setup. We ran the experiment sets to evaluate the online model on
Grid’5000 [79]. We used Cassandra as a hosting storage system. Therefore, we deployed
Cassandra-1.2.3 version on two sites on Grid’5000 with 3 replicas in each site. 30 nodes were
deployed on Sophia and 20 nodes on Nancy. Nodes in Sophia are equipped with 300 GB hard
drives, 32 GB of memory, and 2-CPUs 8-cores Intel Xeon. The Nancy nodes are equipped
with disks of 320 GB total size, 16 GB of memory, and 2-CPUs 8-cores Intel Xeon. In addi-
tion, the network connection between the two sites in the south and the north east of France
is provided by Renater (The French national telecommunication network for technology, ed-
ucation, and research). At the time of running the experiment sets, the average round trip
latency between the two sites was roughly 18.53 ms.

Micro–Benchmark. We designed a micro–benchmark that exhibits the same characteristics
shown in the used Wikipedia traces. It was extremely difficult to reproduce exactly the same
or closely similar behavior. The main challenge is that we do not have enough resources
(with our 50–nodes Cassandra cluster and network speed) to reproduces the same extremely
high throughput and small waiting times between operations exhibited in the traces. There-
fore, we designed a micro-benchmark that keep Wikipedia load characteristics with ampli-
fied waiting times between operations. The designed workload is implemented in Java and
divided into 90 time periods (the number of time periods computed from Wikipedia traces).
Every time period consists of specific properties: read rate, write rate, contention to the same
keys, and values of average waiting time between operations. These values are computed
directly from the Wikipedia traces (with amplified waiting times) and saved into a configura-
tion file. At runtime, the waiting time between operations is generated randomly following
an exponential distribution where the mean equals the average waiting time. In order to run
the online model evaluation, we first run the benchmark to generate new traces that will be
used for offline model construction.

Online Prediction. In order to run Chameleon, we have selected the inconsistency window
rule as an input rule to apply with Wikipedia. For the purpose of experimental evaluation
and given our experiment scale, we assume that the tolerated stale reads are the ones that
enclose updates older than one minute (60000 ms). Moreover, we consider that update con-
flicts are manageable since it is possible to solve them at a latter time by Cassandra based on
causal ordering (Anti–Entropy operation). We consider in addition, that dynamic policies
are allowed with a focus on performance. The variation threshold value is fixed at 25% of
the mean waiting time.

Figure 7.9 shows the probability of observing the different states. We compare the prob-
ability of states observed from past access traces by means of clustering and the probability
of predicted states at runtime. The results clearly show that for the states with the highest
probabilities (mainly State-1 and state-6) the probability is closely similar, which demon-
strates the efficiency of our online prediction model in predicting similar behavior to the one
modeled. We can observe that for State-3 the probability at runtime is higher. This can be
explained by many factors including the error margin that can be associated with classifica-
tion, the random generation of waiting times in the workload, as well as the performance

7.3 – Implementation and Experimental Evaluations 115

 0

 20

 40

 60

 80

 100

S
T
A
T
E
-1

S
T
A
T
E
-2

S
T
A
T
E
-3

S
T
A
T
E
-4

S
T
A
T
E
-5

S
T
A
T
E
-6

S
T
A
T
E
-7

S
T
A
T
E
-8

P
ro

b
a

b
il

it
y

 (
%

)

Clustering

Online prediction

Figure 7.9: Observed states distribution

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

la
te

n
c
y
 (

m
s
)

time periods

Eventual One

Chameleon

Eventual Quorum

Strong

Figure 7.10: Latency evaluation

of the Cassandra storage system (that might be slightly affected in particular by events and
traffic on the shared network) and might therefore, slightly affect the load characteristics.

Latency and Throughput. Figure 7.10 and Figure 7.11 show the performance exhibited by
our approach Chameleon in comparison to different consistency policies. In Figure 7.10, we
can observe that both the Quorum and Strong static consistency policies result in a high op-
eration latencies throughout the different time periods of the workload. Such high latencies
are mainly because these policies suffer from high wide-area network latency. In contrast,
the eventual One policy achieves the lowest operation latencies since data are accessed from
closest local replicas. However, with this policy, multiple consistency violations might occur.
Our approach, Chameleon, shows a high latency variability across the different time periods
while the latency is relatively low and close to the lowest one most of the time. This vari-
ability is the result of adapting the consistency policy according to the application behavior
exhibited in that specific time period. Therefore, Chameleon provides specifically a consis-

116
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90

th
ro

u
g

h
p

u
t

(o
p

/s
)

time periods

Eventual One

Chameleon

Eventual Quorum

Strong

Figure 7.11: Throughput evaluation

tency policy in accordance to the application state for every time period.

Similarly, Figure 7.11 shows the throughput of the different consistency policies through-
out the workload time periods. Both the Quorum and the strong policies show relatively low
throughputs. The throughput in these cases suffers from the wide area network latency as
well as the extra traffic in the network generated by these consistency policies. This can be
in particular, penalizing for a highly on-demand service such as Wikipedia. The One policy
on the other hand, exhibits much higher throughput but, at the cost of potentially consis-
tency violations. Chameleon shows variable throughput (similar to latency) that depends on
the behavior of the application in the given time period. Therefore, the consistency policy
is selected to suit that behavior of the application. Although, a high level of variability is
observed, Chameleon throughput is almost always better than the Quorum’s and relatively
close to the throughput of the One policy.

Data Staleness. After the investigation of the different consistency policies, we show in
Figure 7.12 the staleness of data throughout the workload timeline. The Quorum and the
Strong policies provide high levels of consistency with no stale data being read. However,
this comes at the cost of lower performance and availability, in particular if we consider that
staleness is both rare (because of the low contention to data) and is accepted to a certain
degree within Wikipedia. The One level allows the highest number of stale data, though
these numbers are relatively small since the contention of data accesses to the same keys is
not high. Moreover, the One policy might allow undesirable forms of staleness (e.g. reading
very old data). Chameleon allows for very small number of reads to be stale. Moreover, these
stale reads are expected in accordance with the specified rules during the state–consistency
association phase. Therefore, tolerating such a small “unharmfull” fractions of stale reads
comes with huge benefits for performance support, money savings, or energy consumption
reduction.

7.4 – Discussion 117

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90

N
u

m
b

e
r

o
f

s
ta

le
 r

e
a
d

s

time periods

Eventual One

Chameleon

Eventual Quorum

Strong

Figure 7.12: Data staleness evaluation

7.4 Discussion

Using past data access traces in the purpose of studying consistency was investigated in [17].
Anderson et al. proposed mechanisms that process past access traces offline in order to check
few consistency guarantees and whether they were violated or not during runtime. The main
purpose of this work is the analysis and the validation of the past execution of a workload
in order to understand the provided consistency guarantees of a key–value store. One of
their primary observations is that consistency violations are correlated with the increasing
contention of operations to the same keys.

Few adaptive consistency models were proposed over the years [82, 128, 87, 90]. Most of
these approaches focus on consistency management on the storage system level. Therefore,
there is a little or no focus on consistency requirements on the applications side. Moreover,
no extensive study of the application data access behavior was introduced. In [87], the au-
thors propose a flexible consistency model that variates the level of guarantees depending
on the nature of operation executed in relation with the application semantic. However, the
selection of consistency level of one operation is not automatic and may be very difficult to
induce by application developers, in particular with today’ scales. Kraska et al. [82] propose
an approach that imposes the consistency level on data instead of transactions. Therefore,
data is divided into three categories depending on the consistency guarantees to be pro-
vided. The main difficulty with this approach is the lack of automation when categorizing
the data, which may be in our case of Big Data applications a huge obstacle, since the admin-
istrator is required to categorize huge volumes of potentially heterogenous data manually.
Both approaches in [128, 90] do not consider the application requirements as the first ap-
proach takes into consideration only the read rates and the write rates with no application
semantics consideration while the second approach was proposed in the particular context
of providing persistent storage to databases in the cloud.

Multiple works contributed to the area of modeling and characterizing large-scale infras-
tructures and applications. Montes et al. [97] proposed GloBeM a global behavior modeling
for the whole grid. GloBeM rely on machine learning and knowledge discovery techniques

118
Chapter 7 – Chameleon: Customized Application-Specific Consistency by means of

Behavior Modeling

in order to represent the different sub-systems of the grid by one global model in the form of
finite state machine. This model allows the system administrators to predict future grid state
transitions and therefore anticipate any undesirable states. Other works focused on the char-
acterization and analysis of large-scale application workloads and their behaviors. In [123],
the authors study Wikipedia access traces and accordingly classify client requests and col-
lect access metrics such as the number of read and save operations, and load variations. In
a different work [28], the authors study the user behavior in online social networks. They
propose a thorough analysis of social network workloads with regard to the user behavior
in an attempt to enhance the interface design, provide better understanding of social inter-
actions, and improve the design of content distribution systems. However, none of these
studies were leveraged to provide a vision on consistency management.

7.5 Summary

Consistency management in large–scale storage systems has been widely studied. Most of
existing work focused on leveraging consistency tradeoffs and the impacts on the storage
system with a secondary minimal focus on the application consistency requirements. In this
chapter, we focus instead on the applications in order to fully apprehend their consistency
requirements. Therefore, we first introduce an automatized behavior modeling approach
that detects the different states of an application lifecycle. These states are thereafter associ-
ated with adequate consistency policies based on the application semantics. The application
model is leveraged in a second step as to provide a customized consistency specific to the
application. At runtime, our approach, Chameleon, identifies the application state by means
of efficient classification techniques. Accordingly it provides a prediction on the behavior
of the application and subsequently selects the best-fit consistency policy for the following
time period. Experimental evaluations have shown the efficiency of our modeling approach
where the application states are identified and predicted with a success rate that exceeds
96%. Moreover, we have shown how our approach Chameleon is able to adapt specifically
to the application behavior at every time period in order to provide the desired properties
(including performance, cost, and energy consumption) with no undesirable consistency vi-
olations.

119

Part III

Conclusions and Perspectives

121

Chapter 8
Conclusions

Contents
8.1 Achievements . 122

8.2 Perspectives . 124

wE live in the era of Big Data. The recent explosion of data sizes and the related issues
of velocity and variety introduced unprecedented challenges at enormous scales.
Cloud Computing is an excellent paradigm that offers means to deal with such

challenges. In this context, replication is a crucial feature for the storage service in the cloud
to provide the desperately needed quality of service in terms of availability, performance,
and fault tolerance at Big Data scales. The main issue with replication is the management of
consistency across replicas that may be spread over remote locations. Traditional approaches
that ensure strong consistency by means of synchronous replication expose the storage clients
to wide areas network latency and fail in dealing with Big Velocity challenges of Big Data.
In contrast, eventual consistency tolerates inconsistency at some points in time but guarantees
that all replicas would converge to a consistent state in a future time thus, hiding the network
latency from clients. However, this approach may expose clients to far too much stale data.

The work carried out in the context of this Ph.D project addressed the consistency man-
agement problematic. We demonstrated that self-adaptivity is necessary to deal with the
dynamicity of Big Data applications in the cloud with their Big Variability challenges. In this
context, we introduced self-adaptive approaches at the storage system level. We showed that
these solutions succeeded in enhancing performance, reducing the monetary cost, and sav-
ing energy without violating the consistency requirements of the application, whereas static
eventual and strong consistency approaches fail. Moreover, and in order to complement our
approaches on the system side, we introduced an efficient approach to manage consistency
at the Big Data application level. We demonstrated the efficiency of this approach in un-
derstanding the consistency requirements of the applications and adapting the consistency

122 Chapter 8 – Conclusions

management accordingly. Hereafter, in this chapter, we present our achievements and then
highlight the perspectives of our conducted research.

8.1 Achievements

The results achieved in this research can be summarized as the following.

Providing Self–Adaptive Consistency at a High Performance

Over the years, many efforts were dedicated to handle efficiently the tradeoff between con-
sistency and performance within distributed storage systems. However, most of the existing
solutions tend to manage consistency in the same manner for all types of applications in a
static way. In order to deal with modern Big Data applications running in the cloud and
their workloads dynamicity, we introduced a novel approach, Harmony, that tunes consis-
tency dynamically and adaptively at runtime according to the application requirements. As
to provide efficient tuning, Harmony relies on accurate estimation by means of probabilistic
computations of stale reads rate in the distributed storage system. The estimation takes into
consideration key parameters within the storage system such as the network latency and
the observed read and write rates. Harmony target therefore, is to keep this stale reads rate
below the tolerated stale reads rate of the running application. Moreover, we implemented
Harmony on top of the Cassandra system as an illustrative system with flexible consistency
API.

We conducted two experiment sets on two different platforms. The first set was con-
ducted on Grid’5000 on physical machines and the second set was conducted on Ama-
zon EC2. Results demonstrated that Harmony is an efficient approach for cloud workloads.
Within both platforms, Harmony provides very good performance that is closely similar to
the one provided with the eventual consistency level that involves one replica and far better
than strong consistency. Moreover, and in contrast to static eventual consistency, Harmony
does not violate the consistency requirements of the application.

Providing Cost-Efficient Consistency Model

Cloud Computing is an economical–driven paradigm. Therefore, the monetary cost of the
storage cost is highly relevant for Big Data Applications. However, most consistency studies
tend to focus entirely on performance and availability while neglecting the related finan-
cial issues. In this context, we introduced a study that highlighted the tradeoff between
consistency and monetary cost in the cloud. We provided a detailed bill of the storage ser-
vice within the cloud showing the impact of the selected consistency level. In order to ex-
hibit the tight relation between consistency and the monetary cost, we introduced a novel
consistency–cost efficiency metric. This metric was leveraged in our cost–efficient approach
Bismar. Bismar adaptively tunes the consistency level at runtime as to achieve substantial
cost cuts at a very small fraction of stale reads being read, which is tolerated to a certain
degree by numerous applications. In order to achieve its goals, Bismar always selects the
consistency level with the optimal consistency–cost efficiency value at runtime.

8.1 – Achievements 123

We conducted different sets of experimental evaluations. First, we experimented on Cas-
sandra on Grid’5000 and Amazon EC2 to show the tradeoff between consistency and mon-
etary cost. The results demonstrated our findings about the cost of the storage service that
depends on the consistency level. In the second phase, we experimented on Bismar deployed
on top of Cassandra within two remote sites of Grid’5000. Our results demonstrated how
Bismr achieved high levels of efficiency at cost reductions that reach up to 31% and perfor-
mance improvements compared to quorum–based eventual consistency while tolerating a
minimal fraction of 3.5% of stale reads that are trivial for many applications.

Analyzing the Impact of Consistency on Energy Consumption

With the increasing power usage within data centers nowadays, an important number of
studies is focusing on approaches to reduce the energy consumption. However, consis-
tency impact on storage systems consumptions has hardly been considered. In our study,
we addressed this particular issue. We conducted a set of experiments to show the energy
consumption of the same workloads with different consistency levels. Therefore, we demon-
strated how energy consumption increases as the level of consistency gets higher showing
a tradeoff between consistency and energy saving. Moreover, we analyzed the power and
the resource usage of an eventually-consistent system (namely Cassandra). We showed that
when consistency is eventual there is a variation in usage between the nodes of the storage
cluster. In this context, a balanced distribution of data and tasks is far from optimal for reduc-
ing the consumption. As a result, we introduced and adaptive configuration of the storage
cluster according to the applied consistency. We demonstrated that unbalanced configura-
tions can lead to important energy savings and better consistency with weak consistency
levels. In contrast, balanced configurations are the best-fit for strong levels of consistency.

Providing a Customized Consistency Specific to the Application

Consistency management is dealt with almost exclusively at the storage system level within
existing solutions. Therefore, all applications are considered the same, and can be differenti-
ated only by their impact on the storage system state. However, applications have different
requirements and exhibit distinct consistency needs. In contrast to the existing work, we
addressed the consistency management issue at the application level in order to support the
management on the system side. First, we introduced a modeling approach of the appli-
cation behavior when accessing data. We showed that understanding such a behavior is
critical for providing a customized consistency. The modeling approach was built relying
on machine learning techniques that automatically detect and classify the different states of
the application. In addition, we proposed an association mechanism that associates with
each state, the most pertinent consistency policy based on the high-level semantics of the
application. In a second step, we leveraged the application built model in order to provide
a customized consistency approach, named Chameleon, for the application at runtime. We
introduced an algorithm that observes the current behavior exhibited by the application and
predicts its behavior for the next time period. Accordingly, the adequate consistency policy
is selected.

Experimental evaluations of the modeling approach demonstrated its efficiency. Our
experiments were conducted using traces from Wikipedia as a use case. We showed that

124 Chapter 8 – Conclusions

our model achieves more than 96% of accurate recognition of the application behavior with-
out suffering from overfitting problems. In addition, we conducted series of experiments
to evaluate Chameleon at runtime. We used Cassandra as an underlying storage system de-
ployed on two remote sites in Grid’5000. We demonstrated that Chameleon achieves its goal
by adapting to the need and the behavior of the application in every time period. Accord-
ingly, it provides the required features in the form of stronger consistency, high performance,
reduced cost, and reduced consumption by selecting the most adequate consistency.

8.2 Perspectives

In this Ph.D research, we addressed multiple issues related to consistency and proposed
approaches that lead to efficient consistency management for Big Data. In this section, we
explore the perspectives and the open doors of our conducted research. Therefore, we show
how to exploit the achieved results to work towards even better and more efficient Big Data
management in the cloud.

Automated Storage Provisioning in the Cloud with Performance, Consistency,
and Cost SLA

The storage service in the cloud is one of the key features. This is mainly because it provides
large–scale storage capacities on-demand at a low cost and a good performance to clients.
Moreover, it supports full elasticity. Clients can add and release storage resources online
according to their needs. However, this elastic provisioning remains non-automated within
major cloud vendors.

As a future work, we aim at designing and developing an automated provisioning of
storage resources in the cloud according to a pre-established SLA (Service Level Agreement)
contract. In contrast to the existing SLAs, this SLA must include the required rate of fresh
reads (ie. 100 − the tolerated stale read rate parameter specified in Chapter 4). In addi-
tion, the SLA includes latency requirements and targets the minimization of the monetary
cost. In this context, the proposed mechanism will leverage the estimation of stale reads
rate introduced in Chapter 4 and the cost computation introduced in Chapter 5 in order to
achieve the SLA goals. Accordingly, storage nodes are added or removed automatically and
transparently to/from the storage cluster in the cloud.

Energy-Efficient Consistency by means of Self-Adaptive Storage Reconfiguration

As shown in Chapter 6, adapting the storage cluster configuration according to the applied
consistency level could lead to important energy savings. As a future work, we plan to
leverage the analysis study in Chapter 6 in order to design a self-adaptive reconfiguration
of the storage system cluster. The main goal of this approach is to minimize the energy
consumption for the runtime workload by automatically resizing the warm and the cold
pools of nodes. The proposed approach must monitor the data access to keep track of peak
load times as well as compute the read/write ratio. In addition, it must monitor the used
consistency levels in the workload. Consequently, all these data are processed in order to
determine the best configuration that achieves the adequate performance while reducing

8.2 – Perspectives 125

the energy consumption. Thereafter, it dynamically moves nodes from the warm pool to the
cold pool and vice versa according to the needs.

QoS Consistency for NoSQL Storage Systems

Current eventually–consistent systems do not provide any guarantees on when all replicas
in the storage system would converge to a consistent state. This could be a real problem for
many applications as there is no provided certainty about read data. Moreover, if the read
data is stale, the question is how stale it could be. In this future work, we plan to design
and build a prototype of an eventually–consistent system that provides guarantees on the
freshness of data read and ensures that data is consistent after a set of defined deadlines.
Furthermore, the proposed system will introduce different levels of guarantees considering
the network performance and topology in addition to data location. The storage cluster
should consist of a set of zones where a zone is an entity that encapsulates a set of nodes.
In practice, a zone can correspond to a geographical location, a datacenter, a rack etc. More-
over, and in order to support multi-tenancy, every application should start its own session
when communicating with the storage system. Much like many eventually–consistent sys-
tems, the choice of the consistency level is fully flexible, but with support of QoS (Quality of
Service). The administrator must specify at the start of every session a set of deadlines for
the propagation of data where these deadlines are different depending on which zones are
communicating. The data propagation mechanism will be implemented accordingly.

Big Data Management Framework based on the Application Behavior

Big Data Framework. Understanding the behavior of the application is crucial in our context of
determining its consistency requirements (as presented in Chapter 7). However, in a broader
context, understanding the behavior of the application can lead to a more efficient data and
storage management. As a future work, we plan to leverage our approach for modeling the
behavior of the application, in order to build an efficient data management framework. This
framework will require the application traces as input. The traces must include the data ac-
cess metrics discussed in Chapter 7 as well as information related to the application clients
and the times of failure occurrences in the storage system. These data are further processed
by our approach in order to build the application model. Based on the model, the Big Data
framework adapts automatically as to provide the most efficient management. Accordingly,
policies such as the best replication strategy, the most pertinent consistency policy, the best
strategy to prevent failures or the best strategy to tolerate failures (considering consistency
meanwhile), and the best provisioning approach of the storage resources are determined.
As a result, the Big Data framework adapts specifically to the application needs providing
efficiency at large scale with full automation, which is becoming critical for Big Data appli-
cations.
Hadoop-based Application Modeling. Leveraging the application behavior modeling to provide
Big Data framework implies the need for processing large traces that contain larger volumes
of data than presented in Chapter 7. Moreover, and for modeling efficiency and accuracy, the
traces should contain data covering many years. As a result, processing these large datasets
using single-threaded machine learning algorithms becomes inefficient. In this context, we
plan to build a Hadoop based model. Hereafter, traces processing will be implemented using

126 Chapter 8 – Conclusions

the MapReduce programming model. Moreover, the machine learning algorithms must be
implemented using the same programming model. Subsequently, we plan to investigate
using Mahout [22], the scalable machine learning and data mining library for Hadoop.

127

Bibliography

[1] 3D data management: Controlling data volume, variety and velocity. 2013. URL: http://
blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-
Controlling-Data-Volume-Velocity-and-Variety.pdf.

[2] 5 million terabytes of data. 2013. URL: http://myhumannetwork.com/5- million-
terabytes-of-data/.

[3] Daniel J. Abadi. “Consistency Tradeoffs in Modern Distributed Database System De-
sign: CAP is Only Part of the Story”. In: Computer 45 (2012), pp. 37–42.

[4] About Data Consistency in Cassandra. 2013. URL: http://www.datastax.com/docs/1.
0/dml/data_consistency.

[5] Sarita V. Adve and Mark D. Hill. “Weak ordering - a new definition”. In: SIGARCH
Comput. Archit. News 18.3a (1990), pp. 2–14.

[6] Mustaque Ahamad et al. “Causal Memory: Definitions, Implementation, and Pro-
gramming”. In: Distributed Computing 9.1 (1995), pp. 37–49.

[7] Amazon DynamoDB. 2013. URL: http://aws.amazon.com/dynamodb/.

[8] Amazon Elastic Block Store (Amazon EBS). 2013. URL: http://aws.amazon.com/ebs/.

[9] Amazon Elastic Compute Cloud (Amazon EC2). 2013. URL: http://aws.amazon.com/
ec2/.

[10] Amazon Elastic MapReduce (Amazon EMR). 2013. URL: http://aws.amazon.com/
elasticmapreduce/.

[11] Amazon Glacier. 2013. URL: http://aws.amazon.com/glacier/.

[12] Amazon Simple Queue Service (Amazon SQS). 2013. URL: http://aws.amazon.com/
sqs/.

[13] Amazon Simple Storage Service (Amazon S3). 2013. URL: http://aws.amazon.com/s3/.

[14] Amazon Web Services (Amazon AWS). 2013. URL: http://aws.amazon.com/.

[15] Amazon.com. 2013. URL: http://www.amazon.com/.

[16] Hrishikesh Amur et al. “Robust and flexible power-proportional storage”. In: Proceed-
ings of the 1st ACM symposium on Cloud computing. SoCC ’10. Indianapolis, Indiana,
USA: ACM, 2010, pp. 217–228.

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://myhumannetwork.com/5-million-terabytes-of-data/
http://myhumannetwork.com/5-million-terabytes-of-data/
http://www.datastax.com/docs/1.0/dml/data_consistency
http://www.datastax.com/docs/1.0/dml/data_consistency
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/glacier/
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://aws.amazon.com/s3/
http://aws.amazon.com/
http://www.amazon.com/

128 BIBLIOGRAPHY

[17] Eric Anderson et al. “What consistency does your key-value store actually provide?”
In: Proceedings of the Sixth international conference on Hot topics in system dependability.
HotDep’10. Vancouver, BC, Canada: USENIX Association, 2010, pp. 1–16.

[18] Apache Cassandra. 2013. URL: http://cassandra.apache.org/.

[19] Apache CouchDB. 2013. URL: http://couchdb.apache.org/.

[20] Apache Hadoop. 2013. URL: http://hadoop.apache.org/.

[21] Apache HBase. 2013. URL: http://hbase.apache.org/.

[22] Apache Mahout: scalable machine learning and data mining. 2013. URL: http://mahout.
apache.org/.

[23] Apache Thrift. 2013. URL: http://thrift.apache.org/.

[24] APC Corporation. 2013. URL: http://www.apc.com.

[25] Michael Armbrust et al. Above the Clouds: A Berkeley View of Cloud Computing. Tech.
rep. EECS Department, University of California, Berkeley, 2009. URL: http://www.
eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

[26] Jason Baker et al. “Megastore: Providing Scalable, Highly Available Storage for In-
teractive Services”. In: Proceedings of the Conference on Innovative Data system Research
(CIDR). 2011, pp. 223–234.

[27] Benchmarking Cassandra Scalability on AWS - Over a million writes per second. 2013. URL:
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-
on.html.

[28] Fabrício Benevenuto et al. “Characterizing user behavior in online social networks”.
In: Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference.
IMC ’09. Chicago, Illinois, USA: ACM, 2009, pp. 49–62.

[29] David Bermbach and Stefan Tai. “Eventual consistency: How soon is eventual? An
evaluation of Amazon S3’s consistency behavior”. In: Proceedings of the 6th Workshop
on Middleware for Service Oriented Computing. MW4SOC ’11. Lisbon, Portugal: ACM,
2011.

[30] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency control
and recovery in database systems. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1987.

[31] Big Data – What Is It? 2013. URL: http://www.sas.com/big-data/.

[32] Roberto Bisiani, Andreas Nowatzyk, and Mosur Ravishankar. “Coherent Shared
Memory on a Distributed Memory Machine”. In: ICPP (1). 1989, pp. 133–141.

[33] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A training algorithm
for optimal margin classifiers”. In: Proceedings of the fifth annual workshop on Computa-
tional learning theory. COLT ’92. Pittsburgh, Pennsylvania, USA: ACM, 1992, pp. 144–
152.

[34] E. Brewer. “CAP twelve years later: How the "rules" have changed”. In: Computer 45.2
(2012), pp. 23 –29.

[35] Eric A. Brewer. “Towards robust distributed systems (abstract)”. In: Proceedings of
the nineteenth annual ACM symposium on Principles of distributed computing. PODC ’00.
Portland, Oregon, United States: ACM, 2000.

http://cassandra.apache.org/
http://couchdb.apache.org/
http://hadoop.apache.org/
http://hbase.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://thrift.apache.org/
http://www.apc.com
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://www.sas.com/big-data/

BIBLIOGRAPHY 129

[36] Rajkumar Buyya et al. “Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility”. In: Future Gener. Comput. Syst.
25.6 (2009), pp. 599–616.

[37] Brad Calder et al. “Windows Azure Storage: a highly available cloud storage service
with strong consistency”. In: Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles. SOSP ’11. Cascais, Portugal: ACM, 2011, pp. 143–157.

[38] Philip H. Carns et al. “PVFS: A Parallel File System for Linux Clusters”. In: IN PRO-
CEEDINGS OF THE 4TH ANNUAL LINUX SHOWCASE AND CONFERENCE. MIT
Press, 2000, pp. 391–430.

[39] J. D. Case et al. Simple Network Management Protocol (SNMP). United States, 1990.

[40] Fay Chang et al. “Bigtable: A distributed storage system for structured data”. In:
Proceedings of the 7th conference on usenix symposium on operating systems design and
implementation. 2006, pp. 205–218.

[41] Xue wen Chen and Jong Cheol Jeong. “Enhanced recursive feature elimination”. In:
Sixth International Conference on Machine Learning and Applications, 2007. ICMLA 2007.
2007, pp. 429–435.

[42] Navraj Chohan et al. “See spot run: using spot instances for mapreduce workflows”.
In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Boston,
MA, 2010.

[43] Brian F. Cooper et al. “Benchmarking cloud serving systems with YCSB”. In: Proceed-
ings of the 1st ACM symposium on Cloud computing. SoCC ’10. Indianapolis, Indiana,
USA: ACM, 2010, pp. 143–154.

[44] Brian F. Cooper et al. “PNUTS: Yahoo!’s hosted data serving platform”. In: Proc. VLDB
Endow. 1 (2008), pp. 1277–1288.

[45] James C. Corbett et al. “Spanner: Google’s globally-distributed database”. In: Pro-
ceedings of the 10th USENIX conference on Operating Systems Design and Implementation.
OSDI’12. Hollywood, CA, USA: USENIX Association, 2012, pp. 251–264.

[46] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Mach. Learn.
20.3 (Sept. 1995), pp. 273–297.

[47] Cost of Power in Large-Scale Data Centers. 2013. URL: http://perspectives.mvdirona.
com.

[48] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on
large clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113.

[49] Giuseppe DeCandia et al. “Dynamo: amazon’s highly available key-value store”.
In: Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles.
SOSP ’07. Stevenson, Washington, USA, 2007, pp. 205–220.

[50] Ewa Deelman et al. “The cost of doing science on the cloud: the Montage example”.
In: Proceedings of the 2008 ACM/IEEE conference on Supercomputing. SC ’08. Austin,
Texas: IEEE Press, 2008, pp. 51–62.

[51] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete
data via the EM algorithm”. In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY,
SERIES B 39.1 (1977), pp. 1–38.

http://perspectives.mvdirona.com
http://perspectives.mvdirona.com

130 BIBLIOGRAPHY

[52] Dstat: Versatile resource statistics tool. 2013. URL: http://linux.die.net/man/1/dstat.

[53] Michel Dubois, Christoph Scheurich, and Faye Briggs. “Memory access buffering in
multiprocessors”. In: 25 years of the international symposia on Computer architecture (se-
lected papers). ISCA ’98. Barcelona, Spain: ACM, 1998, pp. 320–328.

[54] EATON Corporation. 2013. URL: http://www.eaton.com/.

[55] EPA. EPA Report to Congress on Server and Data Center Energy Efficiency. Tech. rep. U.S.
Environmental Protection Agency, 2007.

[56] Martin Ester et al. “A density-based algorithm for discovering clusters in large spatial
databases with noise”. In: Second International Conference on Knowledge Discovery and
Data Mining. AAAI Press, 1996, pp. 226–231.

[57] Eucalyptus. 2013. URL: http://www.eucalyptus.com/.

[58] Facebook: Power use in Prineville data center more than doubled last year. 2013. URL: http:
//www.oregonlive.com/silicon-forest/index.ssf/2013/07/facebook_power_
use_in_prinevil.html.

[59] Facebook Statistcs. 2013. URL: http://newsroom.fb.com/content/default.aspx?
NewsAreaId=22.

[60] Ian Foster. “What is the Grid? - a three point checklist”. In: GRIDtoday 1.6 (July 2002).

[61] Ian Foster and Carl Kesselman. “The grid”. In: ed. by Ian Foster and Carl Kesselman.
Morgan Kaufmann Publishers Inc., 1999. Chap. Computational grids, pp. 15–51.

[62] Simson L. Garfinkel. An Evaluation of Amazon’s Grid Computing Services: EC2, S3 and
SQS. Tech. rep. Technical Report, Harvard University, 2007.

[63] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google file system”.
In: SIGOPS - Operating Systems Review 37.5 (2003), pp. 29–43.

[64] David K. Gifford. “Weighted voting for replicated data”. In: Proceedings of the seventh
ACM symposium on Operating systems principles. SOSP ’79. Pacific Grove, California,
United States: ACM, 1979, pp. 150–162.

[65] S. Gilbert and N. Lynch. “Perspectives on the CAP Theorem”. In: Computer 45.2
(2012), pp. 30 –36.

[66] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent
Available Partition-Tolerant Web Services”. In: ACM SIGACT News. 2002.

[67] Google App Engine. 2012. URL: http://code.google.com/appengine/.

[68] Isabelle Guyon et al. “Gene Selection for Cancer Classification using Support Vector
Machines”. In: Mach. Learn. 46.1-3 (2002), pp. 389–422.

[69] Hadoop Distributed File System (HDFS). 2013. URL: http://hadoop.apache.org/.

[70] Hadoop running in production on the Yahoo! Search Webmap. 2013. URL: http : / /
developer.yahoo.com/blogs/ydn/hadoop-running-production-yahoo-search-
webmap-7307.html.

[71] HDD vs SSD. 2013. URL: http://www.diffen.com/difference/HDD_vs_SSD.

[72] Maurice Herlihy. “A quorum-consensus replication method for abstract data types”.
In: ACM Trans. Comput. Syst. 4.1 (1986), pp. 32–53.

http://linux.die.net/man/1/dstat
http://www.eaton.com/
http://www.eucalyptus.com/
http://www.oregonlive.com/silicon-forest/index.ssf/2013/07/facebook_power_use_in_prinevil.html
http://www.oregonlive.com/silicon-forest/index.ssf/2013/07/facebook_power_use_in_prinevil.html
http://www.oregonlive.com/silicon-forest/index.ssf/2013/07/facebook_power_use_in_prinevil.html
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://code.google.com/appengine/
http://hadoop.apache.org/
http://developer.yahoo.com/blogs/ydn/hadoop-running-production-yahoo-search-webmap-7307.html
http://developer.yahoo.com/blogs/ydn/hadoop-running-production-yahoo-search-webmap-7307.html
http://developer.yahoo.com/blogs/ydn/hadoop-running-production-yahoo-search-webmap-7307.html
http://www.diffen.com/difference/HDD_vs_SSD

BIBLIOGRAPHY 131

[73] Maurice P. Herlihy and Jeannette M. Wing. “Linearizability: a correctness condition
for concurrent objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (1990), pp. 463–492.

[74] HP Cloud. 2013. URL: https://www.hpcloud.com/.

[75] Patrick Hunt et al. “ZooKeeper: wait-free coordination for internet-scale systems”.
In: Proceedings of the 2010 USENIX conference on USENIX annual technical conference.
USENIXATC’10. Boston, MA: USENIX Association, 2010.

[76] Shadi Ibrahim, Bingsheng He, and Hai Jin. “Towards Pay-As-You-Consume Cloud
Computing”. In: Proceedings of the 2011 IEEE International Conference on Services Com-
puting (SCC’11). SCC ’11. Washington, DC, USA, 2011, pp. 370–377.

[77] Shadi Ibrahim et al. “Adaptive Disk I/O Scheduling for MapReduce in Virtualized
Environment”. In: Proceedings of the 2011 International Conference on Parallel Processing
(ICPP’11). ICPP ’11. Taipei, Taiwan, 2011, pp. 335–344.

[78] Java Machine Learning Library (Java-ML). 2013. URL: http://java-ml.sourceforge.
net/.

[79] Y. Jégou, S. Lantéri, J. Leduc, et al. “Grid’5000: a large scale and highly reconfigurable
experimental Grid testbed.” In: Intl. Journal of High Performance Comp. Applications 20.4
(2006), pp. 481–494.

[80] David Karger et al. “Consistent hashing and random trees: distributed caching proto-
cols for relieving hot spots on the World Wide Web”. In: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing. STOC ’97. El Paso, Texas, USA: ACM,
1997, pp. 654–663.

[81] Rini T. Kaushik and Milind Bhandarkar. “GreenHDFS: towards an energy-
conserving, storage-efficient, hybrid Hadoop compute cluster”. In: Proceedings of the
2010 international conference on Power aware computing and systems. HotPower’10. Van-
couver, BC, Canada: USENIX Association, 2010, pp. 1–9.

[82] Tim Kraska et al. “Consistency rationing in the cloud: pay only when it matters”. In:
Proc. VLDB Endow. 2 (2009), pp. 253–264.

[83] Rivka Ladin, Barbara Liskov, and Liuba Shrira. “Lazy replication: exploiting the se-
mantics of distributed services”. In: Proceedings of the ninth annual ACM symposium
on Principles of distributed computing. PODC ’90. Quebec City, Quebec, Canada: ACM,
1990, pp. 43–57.

[84] Rivka Ladin et al. “Providing high availability using lazy replication”. In: ACM Trans.
Comput. Syst. 10 (Nov. 1992), pp. 360–391.

[85] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized structured stor-
age system”. In: SIGOPS Oper. Syst. Rev. 44 (2010), pp. 35–40.

[86] Willis Lang and Jignesh M. Patel. “Energy management for MapReduce clusters”. In:
Proc. VLDB Endow. 3.1-2 (2010), pp. 129–139.

[87] Cheng Li et al. “Making geo-replicated systems fast as possible, consistent when nec-
essary”. In: Proceedings of the 10th USENIX conference on Operating Systems Design and
Implementation. OSDI’12. Hollywood, CA, USA: USENIX Association, 2012, pp. 265–
278.

https://www.hpcloud.com/
http://java-ml.sourceforge.net/
http://java-ml.sourceforge.net/

132 BIBLIOGRAPHY

[88] LIBSVM – A Library for Support Vector Machines. 2013. URL: http://www.csie.ntu.
edu.tw/~cjlin/libsvm/.

[89] Huan Liu. “Cutting MapReduce Cost with Spot Market”. In: Proceedings of the 3rd
USENIX conference on Hot topics in cloud computing. HotCloud’11. Portland, OR, 2011.

[90] Rui Liu, Ashraf Aboulnaga, and Kenneth Salem. “DAX: a widely distributed mul-
titenant storage service for DBMS hosting”. In: Proceedings of the 39th international
conference on Very Large Data Bases. PVLDB’13. Trento, Italy: VLDB Endowment, 2013,
pp. 253–264.

[91] Wyatt Lloyd et al. “Don’t settle for eventual: scalable causal consistency for wide-area
storage with COPS”. In: Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. SOSP ’11. Cascais, Portugal: ACM, 2011, pp. 401–416.

[92] Wyatt Lloyd et al. “Stronger semantics for low-latency geo-replicated storage”. In:
Proceedings of the 10th USENIX conference on Networked Systems Design and Implemen-
tation. nsdi’13. Lombard, IL: USENIX Association, 2013, pp. 313–328.

[93] J. B. MacQueen. “Some Methods for Classification and Analysis of MultiVariate Ob-
servations”. In: Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Prob-
ability. Ed. by L. M. Le Cam and J. Neyman. Vol. 1. University of California Press,
1967, pp. 281–297.

[94] Warren S. McCulloch and Walter Pitts. “Neurocomputing: foundations of research”.
In: ed. by James A. Anderson and Edward Rosenfeld. MIT Press, 1988. Chap. A logi-
cal calculus of the ideas immanent in nervous activity, pp. 15–27.

[95] Microsoft Windows Azure Cloud Services. 2013. URL: http://www.windowsazure.com/.

[96] mongoDB. 2013. URL: http://www.mongodb.org/.

[97] Jesús Montes et al. “Finding order in chaos: a behavior model of the whole grid”. In:
Concurrency and Computation: Practice and Experience 22.11 (2010), pp. 1386–1415.

[98] MPICH: High-Performance Portable MPI. 2013. URL: http://www.mpich.org/.

[99] Nimbus. 2013. URL: http://www.nimbusproject.org/.

[100] NodeTool. 2012. URL: http://wiki.apache.org/cassandra/NodeTool.

[101] OCCI: Open Cloud Computing Interface. 2013. URL: http://occi-wg.org/.

[102] OpenNebula: Open Source Data Center Virtualization. 2013. URL: http://opennebula.
org/.

[103] OpenStack. 2013. URL: http://www.openstack.org/.

[104] Mayur R. Palankar et al. “Amazon S3 for science grids: a viable solution?” In: Pro-
ceedings of the 2008 international workshop on Data-aware distributed computing. DADC
’08. Boston, MA, USA: ACM, 2008, pp. 55–64.

[105] David A. Patterson, Garth Gibson, and Randy H. Katz. “A case for redundant arrays
of inexpensive disks (RAID)”. In: Proceedings of the 1988 ACM SIGMOD international
conference on Management of data. SIGMOD ’88. Chicago, Illinois, USA: ACM, 1988,
pp. 109–116.

[106] R. Peglar. Eliminating planned downtime: the real impact and how to avoid it. 2012. URL:
http://findarticles.com/p/articles/mi_m0BRZ/is_5_24/ai_n6095515/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.windowsazure.com/
http://www.mongodb.org/
http://www.mpich.org/
http://www.nimbusproject.org/
http://wiki.apache.org/cassandra/NodeTool
http://occi-wg.org/
http://opennebula.org/
http://opennebula.org/
http://www.openstack.org/
http://findarticles.com/p/articles/mi_m0BRZ/is_5_24/ai_n6095515/

BIBLIOGRAPHY 133

[107] Redis. 2013. URL: http://redis.io/.

[108] Revolutionary Methods to Handle Data Durability Challenges for Big Data. 2013. URL:
http://www.intel.com/content/www/us/en/big-data/big-data-amplidata-
storage-paper.html.

[109] Riak. 2013. URL: http://basho.com/riak/.

[110] Yasushi Saito and Marc Shapiro. “Optimistic replication”. In: ACM Comput. Surv. 37.1
(2005), pp. 42–81.

[111] Sherif Sakr et al. “CloudDB AutoAdmin: Towards a Truly Elastic Cloud-Based Data
Store”. In: Proceedings of the 2011 IEEE International Conference on Web Services. ICWS
’11. IEEE Computer Society, 2011, pp. 732–733.

[112] Christoph Scheurich and Michel Dubois. “Concurrent Miss Resolution in Multipro-
cessor Caches”. In: ICPP (1). 1988, pp. 118–125.

[113] Frank Schmuck and Roger Haskin. “GPFS: A Shared-Disk File System for Large Com-
puting Clusters”. In: In Proceedings of the 2002 Conference on File and Storage Technologies
(FAST). 2002, pp. 231–244.

[114] Philip Schwan. “Lustre: Building a File System for 1,000-node Clusters”. In: PRO-
CEEDINGS OF THE LINUX SYMPOSIUM. 2003, p. 9.

[115] Marc Shapiro and Bettina Kemme. “Eventual Consistency”. Anglais. In: Encyclopedia
of Database Systems (online and print). Ed. by M. Tamer Ózsu and Ling Liu. springer,
2009.

[116] Ion Stoica et al. “Chord: A scalable peer-to-peer lookup service for internet applica-
tions”. In: Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications. SIGCOMM ’01. San Diego, California, USA:
ACM, 2001, pp. 149–160.

[117] Diary R. Suleiman, Muhammed A. Ibrahim, and Ibrahim I. Hamarash. DYNAMIC
VOLTAGE FREQUENCY SCALING (DVFS) FOR MICROPROCESSORS POWER
AND ENERGY REDUCTION.

[118] Ann T. Tai and John F. Meyer. “Performability Management in Distributed Database
Systems: An Adaptive Concurrency Control Protocol”. In: Proceedings of the 4th Inter-
national Workshop on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cations Systems. MASCOTS ’96. IEEE Computer Society, 1996.

[119] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms (2nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006. ISBN:
0132392275.

[120] The Go Programming Language. 2013. URL: http://golang.org/.

[121] Robert H. Thomas. “A Majority consensus approach to concurrency control for mul-
tiple copy databases”. In: ACM Trans. Database Syst. 4.2 (1979), pp. 180–209.

[122] Under the Hood: Scheduling MapReduce jobs more efficiently with Corona. 2013.
URL: https : / / www . facebook . com / notes / facebook - engineering / under -
the - hood - scheduling - mapreduce - jobs - more - efficiently - with - corona /
10151142560538920.

http://redis.io/
http://www.intel.com/content/www/us/en/big-data/big-data-amplidata-storage-paper.html
http://www.intel.com/content/www/us/en/big-data/big-data-amplidata-storage-paper.html
http://basho.com/riak/
http://golang.org/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920

134 BIBLIOGRAPHY

[123] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. “Wikipedia Workload
Analysis for Decentralized Hosting”. In: Elsevier Computer Networks 53.11 (2009),
pp. 1830–1845. URL: http://www.globule.org/publi/WWADH_comnet2009.html.

[124] Werner Vogels. “Eventually consistent”. In: Commun. ACM (2009), pp. 40–44.

[125] Voldemort. 2013. URL: http://www.project-voldemort.com/voldemort/.

[126] Hiroshi Wada et al. “Data Consistency Properties and the Trade-offs in Commercial
Cloud Storage: the Consumers’ Perspective”. In: CIDR 2011, Fifth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Pro-
ceedings. 2011, pp. 134–143.

[127] Hongyi Wang et al. “Distributed systems meet economics: pricing in the cloud”.
In: Proceedings of the 2nd USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud’10). HotCloud’10. Boston, MA: USENIX Association, 2010.

[128] Ximei Wang et al. “An Application-Based Adaptive Replica Consistency for Cloud
Storage”. In: Grid and Cooperative Computing (GCC), 2010 9th International Conference
on. 2010, pp. 13 –17.

[129] Sage Weil et al. “Ceph: A Scalable, High-Performance Distributed File System”. In:
Proceedings of the 7th Conference on Operating Systems Design and Implementation (OSDI
’06). 2006.

[130] Aaron Weiss. “Computing in the clouds”. In: netWorker 11.4 (2007), pp. 16–25.

[131] Weka 3: Data Mining Software in Java. 2013. URL: http://www.cs.waikato.ac.nz/ml/
weka/.

[132] Jason Weston et al. “Use of the zero-norm with linear models and kernel methods”.
In: Journal of Machine Learning Research 3 (2003), pp. 1439–1461.

[133] What Does ’Big Data’ Mean? 2013. URL: http://cacm.acm.org/blogs/blog-cacm/
155468-what-does-big-data-mean/fulltext.

[134] What is Cloud Computing? 2013. URL: http://aws.amazon.com/what-is-cloud-
computing/.

[135] Wikipedia. 2013. URL: http://en.wikipedia.org/.

[136] World’s data will grow by 50X in next decade, IDC study predicts. 2013. URL: http://www.
computerworld.com/s/article/9217988/World_s_data_will_grow_by_50X_in_
next_decade_IDC_study_predicts.

[137] Yahoo Cloud Serving Benchmark. 2013. URL: https://github.com/brianfrankcooper/
YCSB/wiki.

http://www.globule.org/publi/WWADH_comnet2009.html
http://www.project-voldemort.com/voldemort/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext
http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext
http://aws.amazon.com/what-is-cloud-computing/
http://aws.amazon.com/what-is-cloud-computing/
http://en.wikipedia.org/
http://www.computerworld.com/s/article/9217988/World_s_data_will_grow_by_50X_in_next_decade_IDC_study_predicts
http://www.computerworld.com/s/article/9217988/World_s_data_will_grow_by_50X_in_next_decade_IDC_study_predicts
http://www.computerworld.com/s/article/9217988/World_s_data_will_grow_by_50X_in_next_decade_IDC_study_predicts
https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki

	Introduction
	Context
	Contributions
	Publications
	Organization of the Manuscript

	.3emPart I – Context: Consistency Management for Big Data
	Big Data Systems and Cloud Computing: A Short Overview
	Big Data
	Big Data Definitions
	Big Data Platforms
	Big Data Infrastructures

	Cloud Computing
	Cloud Service Levels
	Cloud Computing Models
	Cloud Computing Platforms

	Big Data Applications in the Cloud: Challenges and Issues
	Big Data Challenges
	Our Focus: Replication and Consistency

	Summary

	Consistency Management in the Cloud
	The CAP theorem
	Consistency Models
	Strong Consistency
	Weak Consistency
	Eventual Consistency
	Causal Consistency
	Timeline Consistency
	Discussion

	Cloud Storage Systems
	Amazon Dynamo
	Cassandra
	Yahoo! PNUTS
	Google Spanner
	Discussion

	Adaptive Consistency
	RedBlue Consistency
	Consistency Rationing

	Summary

	.3emPart II – Contributions: Adaptive Consistency Approaches for Cloud Computing
	Consistency vs. Performance: Automated Self-Adaptive Consistency in the Cloud
	Motivation
	Harmony: Elastic Adaptive Consistency Model
	Zoom on Eventual Consistency Levels in Cloud Storage
	Harmony

	Stale Reads Rate Estimation
	Stale read probability
	Computation of the number of replicas Xn

	Implementation & Experimental Evaluation
	Harmony Implementation
	Harmony Evaluation
	Estimation Accuracy of Stale Reads Rate

	Discussion
	Summary

	Consistency vs. Cost: Cost-Aware Consistency Tuning in the Cloud
	Motivation
	How Much does Storage Cost in the Cloud ?
	Cloud Storage Service and Monetary Cost
	Cost Model
	Consistency vs. Cost: Practical View

	Bismar: Cost-Efficient Consistency Model
	A metric: Consistency-Cost Efficiency
	Bismar

	Experimental Evaluation
	Consistency–Cost Efficiency
	Monetary Cost
	Staleness vs. monetary cost
	Zoom on resource cost in Bismar.

	Discussion
	Summary

	Consistency vs. Energy Consumption: Analysis and Investigation of Consistency Management impact on Energy Consumption
	Motivation
	Insight into Consistency–Energy Consumption Tradeoff
	Tradeoff Practical View
	Read/Write Ratio Impact
	Nodes Bias in the Storage Cluster

	Adaptive Configuration of the Storage Cluster
	Reconfiguration Approach
	Experimental Evaluation

	Discussion
	Summary

	 Chameleon: Customized Application-Specific Consistency by means of Behavior Modeling
	Motivation
	General Design
	Design Goals
	Use Cases
	Application Data Access Behavior Modeling
	Rule-based Consistency-State Association
	Prediction-Based Customized Consistency

	Implementation and Experimental Evaluations
	Implementation
	Model Evaluation: Clustering and Classification
	Customized Consistency: Evaluation

	Discussion
	Summary

	.3emPart III – Conclusions and Perspectives
	Conclusions
	Achievements
	Perspectives

