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Abstract

Over the last decade, grid computing has paved the way for a new level of large scale distributed

systems. The grid can be defined as a set of geographically dispersed, interconnected computational

resources, aimed at performing challenging computational tasks. This infrastructure makes it possible

to securely and reliably take advantage of widely separated computational resources that are part of

several different organizations. Resources can be incorporated to the grid, building a theoretical vir-

tual supercomputer. However, this new step in distributed computing comes along with a completely

new level of complexity. Grid management mechanisms play a key role, and a correct analysis and

understanding of the grid behavior is needed. Grid systems must be able to self-manage, incorporating

autonomic features capable of controlling and optimizing all grid resources and services. Traditional

distributed computing management mechanisms analyze each resource separately and adjust specific

parameters of each one of them. When trying to adapt the same procedures to grid computing, the

vast complexity of the system can make this task extremely complicated.

But grid complexity could only be a matter of perspective. It could be possible to understand the

grid behavior as a single system, instead of a set of resources. This abstraction could provide a deeper

understanding of the system, describing large scale behavior and global events that probably would

not be detected analyzing each resource separately. This abstraction could also be a solid, unified

basis on top of which advanced grid autonomic management solutions could be developed.

In this Ph.D. thesis a specific methodology is presented and described in order to create a global

behavior model of the grid, analyzing it as a single entity. The purpose of this model is to serve as the

above mentioned abstraction of the grid system, providing an unique global behavior understanding.

This global behavior model becomes also an extremely valuable tool for developing autonomic man-

agement mechanisms and contributes to a service-oriented, unified vision of the grid. This method-

ology is strongly based on system monitoring, performance estimation tools, knowledge discovery

techniques and advanced scientific visualization. As a whole, it provides a unique and new point of

view of grid computing, contributing to enrich and develop this technology.

To conclude, the proposed methodology has been tested on a series of typical experimental sce-

narios, both real and simulated, obtaining statistically meaningful results confirming that a global

behavior model of a grid system benefits its understanding and serves as a solid basis to improve its

autonomic capabilities.
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Resumen

Durante la última década, la computación grid ha sentado las bases para alcanzar un nuevo or-

den de magnitud en los sistemas distribuidos. Se puede definir el grid como un conjunto de recur-

sos (máquinas, elementos de comunicación y otros dispositivos) interconectados y geográficamente

distribuidos, que se unen para enfrentarse a grandes desafíos computacionales. Esta infraestructura

permite aprovechar simultáneamente múltiples recursos independientes pertenecientes a diferentes

instituciones. Los recursos se unen al grid para dar lugar a un gigantesco superordenador virtual. No

obstante, este avance en los sistemas distribuidos eleva a su vez su complejidad. Los mecanismos

de gestión del grid juegan por tanto un papel decisivo. La mayoría de técnicas de gestión actuales

analizan de forma separada cada recurso e intentan optimizar su funcionamiento de forma separada.

Cuando se trata de adaptar este enfoque al grid, su elevada complejidad dificulta extremadamente el

proceso.

No obstante, la problemática causada por la complejidad del grid podría ser simplemente una

cuestión de punto de vista. Se podría intentar observar el comportamiento del grid como si de un

único elemento se tratase, en lugar de un gigantesco conjunto de recursos. Esta abstracción ofrecería

nuevo conocimiento sobre el sistema de forma global, permitiendo analizar la sinergia existente entre

sus componentes en lugar de los detalles específicos de cada uno. Así mismo, proporcionaría una

sólida base sobre la que desarrollar mecanismos de auto-gestión global del mismo.

Esta tesis doctoral presenta una metodología específica, diseñada para construir un modelo de

comportamiento global de un grid, representándolo como una única entidad. Dicho modelo realiza

la función de abstracción anteriormente mencionada, proporcionando una visión unificada y global

del sistema. Este modelo sirve, a su vez, como una herramienta de gran valor a la hora de desarrollar

mecanismos de gestión del grid. Se trata de una metodología fuertemente basada en la monitorización

del sistema, mecanismos de estimación del rendimiento, técnicas de extracción de conocimiento y vi-

sualización científica avanzada. En conjunto, proporciona un nuevo punto de vista bajo el que analizar

y desarrollar la tecnología grid.

Por último, la metodología propuesta ha sido validada mediante diversos estudios experimen-

tales, en escenarios tanto reales como simulados. Los resultados obtenidos proporcionan evidencias

estadísticamente significativas de que el modelo de comportamiento global del grid propuesto mejora

el conocimiento del sistema y proporciona las bases para optimizar sus mecanismos de auto-gestión.

Palabras clave: computación grid, computación autónoma, modelado de comportamiento.
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Chapter 1

Introduction

Since the appearance of the first cluster computers, distributed computing has become the common

basis for the majority of new advances in supercomputing. Network interconnection has enabled to

combine independent resources, making it possible to create powerful systems, capable of achieving

top levels of computational power and new functional capabilities. Clear proof of this is that most of

top 500 computers in the world are of distributed (cluster-like) nature (83% according to the 11/2009

list at TOP500 Supercomputing Site [TSS]).

With the emergence of the Internet and global interconnection, new forms of large scale dis-

tributed computing have appeared. Resources could not only be combined within local, private net-

works, but also geographically dispersed ones, enabling to access to a potentially unlimited pool of

computational power. Several initiatives have explored this idea (described in more detail in Chapter

2) but it was in the late 1990s when the idea was deeply explored and developed with the appearance

of grid computing [KF98] trying to address all possible related issues.

1.1 Motivations

The grid could be seen as the utmost expression of a large scale distributed system. It can be

defined as a massive pool of heterogeneous and geographically distributed computational resources.

These resources are coordinated by the grid, but not subject to a centralized control. They use stan-
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4 CHAPTER 1. INTRODUCTION

dard, open and general-purpose protocols and interfaces to interact and, finally, the resulting system

delivers non-trivial qualities of service. The grid allows us to globally share computing resources,

storage elements, specific applications, specific-purpose systems, etc. Most of characteristics pre-

sented by grid systems were already present in other large scale computing initiatives. Grid computing

puts all these ideas together, coordinating them and further developing their principles and implica-

tions. The grid provides a successful environment for applications that require a very large amount

of computational and storage resources, such as numerical simulations, genetic analysis, complex

natural simulations, etc. Many of these advanced applications are related to great scientific efforts,

often called grand challenge problems, and have been the main objective of many grid development

projects. A grand challenge is a fundamental problem in science or engineering, with broad applica-

tions, whose solution would be enabled by the application of high performance computing resources

that could become available in the near future. Examples of grand challenges are computational fluid

dynamics, structure calculations for the design of new materials, development of plasma dynamics

for fusion energy, etc. Also, from a different, more market-oriented perspective, the grid can be an

ideal infrastructure for developing utility computing solutions, renting computational resources based

on client specific needs.

However, over the past decade grid computing has received some criticism, due to the many

technological and social problems that the development of this technology creates. Among the most

important technological issues are communication and software protocols integration, management,

scalability, dependability and security. Among the non-technological ones, the most important are

related to confidence and administrative issues between grid partners sharing resources, given the de-

centralized nature of the system. Most of these grid issues can be roughly summarized in one word:

complexity. The extremely complex nature, at many different levels, of this kind of systems is the

underlying cause of all these mentioned problems. This has an effect on all aspects of grid operation

and needs to be handled properly in order to provide high performance, dependability and quality of

service among other possible features. In order to build a grid computing infrastructure, its natural

complexity has to be correctly identified and understood. Developing techniques capable of manage

this complexity enables to provide scalability, dependability, quality of service, etc.

1.1.1 Managing complexity

One of the most common strategies to handle complexity in large scale distributed systems is the

incorporation of autonomic computing features. Autonomic computing [IBM06] (discussed in detail

in Chapter 3) is an attempt to deal with the system’s complexity, in order to increase performance

and other features. It was inspired by biological systems that can regulate themselves (like the human
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nerve system). In autonomic computing systems multiple management tasks are done automatically

and transparently, providing (among other features) reliability, dependability and quality of service.

The different aspects related to autonomic computing have proved to be beneficial for grid com-

puting in many ways, making it possible to achieve some of its most ambitious goals. Incorpo-

rating autonomic features into grid management mechanisms strongly facilitates the system admin-

istrator task, which in a large scale system like a grid would be otherwise overwhelming, or sim-

ply impossible. Many of current grid management techniques include autonomic characteristics

[BAG00, SF05, Sán08] dealing with each independent resource’s separately and automatically opti-

mizing its behavior in order to achieve an improvement in global performance. This approach seems

reasonable, given the variety of individual, heterogeneous resources that can be part of a grid system.

However, this management approach focused on individual resources seems to be the opposite of

what it is traditionally done when managing computing systems. Typical, less complex systems such

as individual machines or clusters are usually regarded and analyzed as single entities, and manage-

ment techniques address global issues that affect not only its individual components, but also the sum

of its parts. This creates the idea of the system as a separate concept from the sum of its parts. This

idea is made possible by an abstraction process that isolates the top level user from the machine’s

specifics.

When noticing this apparent difference between the grid and other systems, several questions

arise, regarding its autonomic management: Why is grid management different? If the concept of

grid exists from theoretical point of view, why there is no translation of it into practical terms? Is a

grid abstraction as a single entity possible?

1.1.2 Antecedents

This Ph.D. thesis originated from the research lines initiated by the Operating Systems Group of

the Facultad de Informática (Computer Science School) and the Supercomputing and Visualization

Center of Madrid (CeSViMa), both institutions belonging to the Universidad Politécnica de Madrid

(UPM). These research lines focused on high performance computing (HPC), parallel I/O, grid com-

puting, advanced information analysis and scientific visualization.

In past years, the continuous research of the Operating Systems Group on HPC, and more specifi-

cally, on high performance I/O, led to the development of the MAPFS file system [Pér03] and its grid

extension, MAPFS-Grid [Sán08]. The latter project led the group’s research into the grid computing

field, addressing new challenges and facing with the biggest issue of grid complexity.
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Handling this complexity requires its understanding. Systems can be observed and behavior in-

formation can be collected, but in most situations extracting useful knowledge from that data is not

a trivial task. The experience in this area of both Operating Systems Group and CesViMa provides

the necessary background to make successful contributions in grid complexity analysis and behavior

modeling. In particular, advanced knowledge discovery techniques and scientific visualization have

proved to be of high value for this Ph.D. thesis.

1.2 Hypothesis and objectives

It may be argued that the grid is a large and complex infrastructure and that a global, unified

vision of it is just not possible. However, this apparently unsolvable problem could be simply caused

by a matter of perspective. Maybe current grid management techniques are excessively focused on

low level technological aspects and, based on them, it is difficult to conceive how a global model can

contain and explain all these little details. Given the service-oriented nature of the original grid idea, a

hypothetical global model of the whole grid could be strongly beneficial for both user interaction and

system management. Following this flow of reasoning, this Ph.D. thesis aims at demonstrating that
a high-level, global, unified and service-oriented model of the grid behavior can be constructed,
and then it can be used to improve the grid’s management and autonomic capabilities. This also

serves, therefore, as the basic hypothesis this work is focused on.

Based on this hypothesis, the main objective of this thesis is to create the necessary mechanisms

to construct such a global behavior model and to develop the adequate scientific experimentations in

order to validate this approach and demonstrate its benefits. In more detail, the following separated

objectives can be distinguished:

• Investigation and analysis of the current behavior modeling and abstraction mechanisms in

order to establish the global model basic characteristics.

• Formal development and validation of the necessary theoretical formalisms on which the grid

global behavior model is based on.

• Study and identification of the theoretical benefits and implications of a global behavior ap-

proach regarding grid management.

• Formalization, design and implementation of a behavior analysis methodology capable of cre-

ating a grid service-oriented global model.
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• Validation of the proposed methodology, focusing on its capabilities to provide and benefit from

autonomic characteristics.

To fulfill these objectives, the following milestones were proposed, as the three capital achieve-

ments that should have been accomplished during the development of this Ph.D. thesis:

1. Formalization of the theoretical concepts required for the definition of a grid global model.

These must include a basic and general behavior approach but, at the same time, they should

be designed to define a model that could benefit from autonomic management.

2. Definition of a practical methodology capable of creating such a model, describing and validat-

ing its principal characteristics.

3. Demonstration of the benefits of this global behavior approach on different scenarios, focusing

on autonomic management aspects of grid computing.

As a summary, this work attempts to address the fundamental issues regarding the definition and

formalization of a global, abstract vision of the grid, highlighting its features and benefits.

1.3 Document organization

The rest of this document is divided into three thematic blocks. Each one is divided in chapters to

facilitate its understanding:

• State-of-the-art: the first part gathers the current state of the researching areas related to this

Ph.D. thesis work.

– Chapter 2 describes several distributed computing technologies designed to solve chal-

lenge problems that demand great computing and storage capacities. Most of its content

is dedicated to grid computing, as it is the main scope of this work. Other distributed

technologies such as cluster and cloud computing are also discussed.

– Chapter 3 describes the advances made to deal with the growing complexity of computer

systems that led to the software complexity crisis. It focuses on autonomic computing,

aiming at finding automatisms to obtain the maximum performance of applications with-

out having expert knowledge or complex control systems.

– Chapter 4 studies several statistical and knowledge discovery methods that can help to

model large scale distributed systems.
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• Problem statement and proposal: the second part constitutes the core of this work. It states

the problem to be solved and the proposed approach. The proposal addresses the combination

of the researching lines of autonomic computing, behavior modeling and data mining, in order

to analyze the grid and create a global behavior model. The model construction methodol-

ogy proposed is thoroughly analyzed and validated in different experimental scenarios. Finally

some extensions to this methodology are proposed, to incorporate behavior prediction capabil-

ities.

– Chapter 5 describes the initial problem statement, developing the idea of a single-entity,

service-oriented, global model. It addresses these issues from a basic, theoretical per-

spective, analyzing its options, alternatives and implications. It focuses on an autonomic

management perspective.

– Chapter 6 further extends the autonomic computing discussion and formalizes the basic

behavior modeling concepts, from a global grid service-oriented perspective.

– Chapter 7 focuses on formally defining a practical methodology to create a global model

of the grid behavior. This chapter provides an elaborated study of the proposed method-

ology and presents experimental results to validate the approach.

– Chapter 8 empirically illustrates how grid autonomic management can be benefited from

global behavior modeling, presenting detailed experimental results.

– Chapter 9 explores an advanced extension to the global grid model, incorporating behavior

prediction capabilities.

• Conclusions and future work: the last part shows the conclusions of this Ph.D. thesis and the

open lines of this proposal.

– Chapter 10 extracts the most important conclusions obtained from the achievements of

this work.

– Chapter 11 describes the possible researching lines that arise at the end of this thesis

development.
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Chapter 2

Large-scale distributed computing

Moore’s law, stated by Gordon Moore in 1965, predicted that “the number of transistors per chip that

yields the minimum cost per transistor is roughly doubled every two years” [Moo65]. This was an

ambitious attempt to foresee the technological evolution of the computing field. A few years later

the law was slightly revised, reducing the time period to 18 months. Surprisingly, Moore’s law pre-

dictions continue being fulfilled today, almost 45 years after it was stated. However, as the available

computing resources increase, the demands the society imposes on this technology grow accordingly.

The possibilities that the new computing infrastructures leave open stimulate the industrial and scien-

tific communities, continuously producing new challenges of increasing complexity.

Along with these never-ending increasing demands, one of the basic principles of modern society

economics is to maximize the benefit/cost ratio. Computer Science is not an exception in this case,

and computing technological advances have followed this premise from the beginning. The effect

of this basic principle has had a very clear impact on the field in the last two decades, drastically

changing the way the most basic computational resources are exploited. Years ago many computing

challenges could only be faced by means of highly expensive, hardly scalable supercomputers. Nowa-

days the focus is on relatively cheap, regular resources, not very powerful independently, connected

by means of communication networks and programmed to work together. The synergy that occurs

during this distributed interaction is the key to new levels of computing evolution.
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A very clear example of this evolution is the CERN’s1 particle accelerator Large Electron-Positron

(LEP). In the early years of its operation, Cray supercomputers were used in order to analyze the data

it produced. These were replaced by clusters in the late nineteens and finally, the newer Large Hadron

Collider (LHC) uses grid computing technology.

As correctly stated in [Mar02], the main problem of this modern approach is that, in order for it

to be successful, carrying out distributed computing among several resources must have lesser cost

than in a single machine, and achieving this is not always an easy task. On the one hand, High

Throughput Computing (HTC) applications are easily adaptable because they can be divided in parts

or jobs, which can be assigned to different machines. High Performance Computing (HPC), on the

other hand, usually presents a high level of interaction between tasks, requiring reliable and high-

speed communication, so the application can efficiently progress. In this case computing distribution

in independent blocks is much more complicated.

2.1 Cluster computing

The first alternative to multiprocessor systems was cluster computing. The main objective of this

technology was to improve performance vs. cost ratio. A cluster is a set of dedicated, independent

machines (each one with its own CPU or CPUs, memory, etc.) interconnected by a private, fast, com-

monly dependable and dedicated network. Nowadays clusters provide high performance, availability,

dependability and scalability. The independent machines that make up a cluster (commonly referred

to as nodes) are normally homogeneous, presenting identical hardware and software characteristics.

However, there are many clusters that present certain degree of heterogeneity, incorporating various

types of nodes nodes, usually dedicated to different specific tasks.

The cluster management system is on top of all the interconnected hardware and software from

independent machines that together form a cluster. Its basic function is to provide the necessary mech-

anisms to make all these cluster nodes work together and provide service. The cluster management

system handles user interaction and internal coordination, controlling aspects such as load balancing,

fault tolerance and single system image. To carry out this tasks it usually incorporates tools such as

monitoring mechanisms and predefined management policies aimed at control and improve perfor-

mance. The cluster management software usually works very close to the node’s operating system,

performing numerous operations at system level (otherwise tasks such as job migration could not be

possible). In short, the cluster management system works as a middleware layer between the user and

1Conseil Européen pour la Recherche Nucléaire (English: European Organization for Nuclear Research)
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the cluster nodes, providing:

• Maintenance and optimization tools. Modern cluster management software performs tasks such

as job checkpointing, load balancing, fault-tolerance, advance scheduling, etc.

• A single system access interface, commonly named single system image. This presents the

user with an unified point of access and interaction, providing the same response that when

operating a single computer. This isolates the user from the inherit complexity of the cluster

distributed nature. This is important, considering that modern clusters sometimes incorporate

hundreds or even thousands of nodes.

• Scalability. The cluster management system should be prepared to automatically detect new

nodes or other resources incorporated to the cluster and take advantage of them.

Nowadays there are several cluster management systems in use. Among those most frequent,

MOSIX, OpenMosix, LinuxSSI and Beowulf can be distinguished. MOSIX [mos], and its extended

open source release OpenMosix [OMo], provide load balancing in a transparent way, making possible

for a cluster to behave as a sort-of single machine. LinuxSSI [LSS] is an operating system for clusters

developed over the existing Linux-based Kerrighed technology [Ker], which provides single system

image. Beowulf [Beo] is a cluster technology based on Linux computers designed to construct a par-

allel virtual supercomputer. Besides these typical cases, there are more simplistic queue managers,

designed to send jobs to each node depending of its workload, like OpenPBS [PBS] and Condor

[Con]. These can not be consider cluster middlewares per se, as the are not aimed at providing single

system image. However they strongly simplify the use of a set of independent, interconnected nodes.

Although cluster computing provides a relatively cheap alternative to more traditional supercom-

puters, there is sometimes the misconception that any piece of software would execute faster on a

cluster, as it is supposed to provide higher performance. However, it is important to remember that,

to achieve this, the software must undergo an adaptation to this different, distributed environment.

This means, in most situations, re-devoloping most part of it, trying very specifically to avoid non-

dependent parallel operations that would hurt performance.

Finally, there are other issues and limitations regarding cluster computing. This technology en-

ables the efficient use of distributed resources, but under a very controlled, secure conditions. This

makes impossible a real combination of resources from different administrative domains (i.e. putting

together computational resources from different organizations) as different security policies will al-

ways interfere with the natural cluster operation. Furthermore, most cluster technology is not based

on open standards, which complicated the growth and communication among applications.
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2.2 Grid computing

In 1995, during the 8th ACM/IEEE conference on Supercomputing in San Diego, California

(SC’95) an innovative distributed computing experiment was presented. This experiment demon-

strated how it was possible to execute distributed applications in 17 separated research facilities owned

by different centers, connected by a high speed network. This proof of concept experiment inspired

a new research line, aimed at making possible to share large-scale computational resources in a dis-

tributed way.

Taking advantage of these different available computational resources, physically separated but

all connected by means of the Internet network is what gave birth to grid computing. The term grid

was used for the fist time in this context by Foster and Kesselman in [KF98]. It came inspired by

the idea of making computer power as easy to access as an electric power grid, offering an abstract,

uniform and cheap access point to electricity anywhere. Foster and Kesselman idea was to make grid

computing capable of providing computing power and data storage under analogous terms.

Therefore, a grid can be intuitively defined as an enormous set of machines connected by any

communications network (the Internet, WAN, etc.) joining efforts to carry out costly computing tasks

and providing specific services. In short, a grid is a pool of geographically dispersed distributed com-

puting resources that work together.

Unlike most traditional distributed systems, grid computing is based on different organizations

sharing resources in a non-dedicated way. This means that grid partners do not need to reserve and

dedicate specific resources to the grid computational pool. Grid resources can be simultaneously and

independently used by their respective owners. This means that some grid nodes can be, for example,

part of a grid and available to grid users under certain conditions and, at the same time, part of a pri-

vate corporative network and be used by the institution employees under completely different terms.

Grid computing technology provides the necessary mechanisms to guarantee that this duality takes

place without security concerns of any kind. The conditions under which each grid partner shares its

resources can be set independently, and the resources owner always keeps full administrative control

of its property.

This non-dedicated way of sharing resources makes much more easy for grid partners to con-

tribute to the common resource pool, as they do not need to dedicate specific hardware and are able to

fully control how their resources are being used. Grid computing can take advantage of low workload

periods of all connected non-dedicated resources, enabling to sum up enormous quantities of comput-
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ing power. This makes possible to solve extremely complex computational problems, very difficult to

process using a single machine. Grid computing makes the most of these spare computational power

from non-used resources, creating a de facto virtual supercomputer.

From a user-level perspective, the grid is capable of simultaneously accepting an enormous

amount of service requests from users belonging to all grid partners. Correct autentification and

other security related issues are normally handled in by means of electronic certificates and other

advanced trustworthy computational solutions.

It is important to stress that grid computing is not intended to replace other previous distributed

computing technologies. It is aimed at addressing more global, large-scale problems, making it pos-

sible for different authorities or virtual organizations to share their computational resources, without

compromising the private security policies and management tools [Fos01]. In consequence grid com-

puting must respect certain rules:

• It must not interfere with site or organization management.

• It must not put user and organization security at risk.

• It must not force to install or modify previously existing nodes basic tools such as operating

systems, networks protocols or services.

• It must enable organizations, sites or resources to join or leave the grid at any moment.

• It must provide a reliable infrastructure.

• It must provide support for heterogeneous components.

• It must use existing standards and technologies.

In [Fos02], I. Foster proposed a three-point checklist of requirements any grid should meet:

1. “Coordinates resources that are not subject to centralized control...”. Following the idea above

introduced, each grid partner keeps full control of its own resources, allowing a decentralized

structure with possible different security and management policies for each site or virtual orga-

nization.

2. “...using standard, open, general-purpose protocols and interfaces...”. This is necessary in order

to make possible interaction among resources in the heterogeneous, decentralized structure of

the grid.
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3. “..to deliver nontrivial qualities of service.”. This stresses the idea that grids are built to share

resources and achieve new height in computing power capabilities, providing quality of service

in aspects such as response time, throughput, availability and security.

In short, among all the benefits of grid computing, the following ones can be stood out:

• Potentially unlimited computational power provided by thousands or even millions of globally

interconnected computers.

• Possible bottleneck elimination in some computing processes due to a very high resource avail-

ability, offering the chance to select the most adequate computing solution in each case.

• Possibility of managing and taking advantage of multiple sites and domains corresponding to

different virtual organizations, with all the computational resources in them.

• Integration of systems and heterogeneous devices. A grid can be built from heterogeneous

resources and include a large range of different technologies.

• Scalability. Grids can grow from being formed of a few resources to millions of them. In tra-

ditional distributed systems, this very often leads to operation degradation as the system size

increases. Grid computing is designed taking the heterogeneity, size and resource global disper-

sion into account, developing services adapted to these conditions. This guarantees scalability

and quality of service at the same time.

• Adaptability. The frequent variability of resources is a basic aspect of grid technology. Grid

services and applications are designed with this in mind, handling this increased complexity

and adapting its behavior dynamically to use the available resources at any given time.

2.2.1 Grid middleware

The software infrastructure responsible of creating and managing the grid is called the grid mid-

dleware. Its functions make possible to provide the above mentioned grid features. It coordinates

the grid resources, manages the grid services and nodes, controls all security aspects involved and

provides a unified user interface. The grid middleware is composed of the following several service

layers:

1. Grid fabric. This represents all the grid distributed resources that are accessible from any

location of Internet. These resources can be any kind of computing nodes (single PCs, multi-

processors, clusters...) with possibly different operating systems (Windows, UNIX, Linux...),

storage devices, databases, and scientific instruments such as telescopes, climate sensors or

other devices.
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2. Core grid middleware. This represents basic services such as remote process management,

resource assignment, storage access, information discovery, security, and other different quality

of service (QoS) related aspects, such as resource reservation and brokering.

3. User level grid middleware. This includes mechanisms and tools for developing user level

applications intended to access and manage global resources.

4. Grid portals. This represents a web service infrastructure where final users can run applications

and obtain results in a transparent way.

In the following subsections each of these service layers will be described in detail.

2.2.1.1 Grid fabric

This layer contains a set of services designed to make possible the efficient use of local resources.

There can be many different types of services within the grid fabric, but most grid computing solutions

contain at least the following three:

• The queue manager is the service usually in charge of managing and distributing the jobs that

are executed in each local resource. Sun Grid Engine [SGE] and Condor [Con] stand out among

typical queue managers, due to their widespread use.

• Parallel computing libraries are almost always present, such as MPI [MPI] and PVM [PVM].

They are necessary to take advantage of compound local resources, such as clusters or shared-

memory supercomputers.

• Resource monitoring services, such as Hawkeye on Condor [Haw] and Ganglia [gan] are a nec-

essary part of the grid fabric. They are used to observe each single local resource performance

at any given moment.

2.2.1.2 Core grid middleware

On top of the grid fabric rests the core grid middleware. This is a critical layer of the grid system

as it drastically conditions the whole system’s functions and structure. Nowadays there are several

core grid middleware technologies. Among those, Unicore, Globus and gLite should be noted for

their widespread use and scientific relevance.

UNICORE (Uniform Interface to COmputer REsources) [ES01] is a grid middleware initiative

developed in two projects funded by the German ministry for education and research (BMBF). UNI-

CORE provides seamless, secure, and intuitive access to distributed grid resources such as super-

computers or clusters and information stored in databases. Applications distributed by means of
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UNICORE are divided in parts, which run in different computers in an asynchronous or sequentially

synchronized way. An UNICORE job contains a multi-part application indicating its resources re-

quirements and dependences among different parts. The UNICORE technology is developed as open

source under BSD license.

The aims of the UNICORE’s design are based on:

• Having a simple graphical user interface.

• Architecture based on the concept of abstract jobs including security.

• Minimal interference with the local procedures.

• Use of existing technologies taking into account the new growing technologies.

UNICORE is designed to support batch jobs using a distributed system in which the different

parts of the application can be run. In order to standardize the accesses to the computers, the user id

is unique.

The Globus toolkit [FK97, Fos05] is the de facto standard grid computing middleware. Nowa-

days it is being used by leading computing companies, such as HP, Cray, Sun Microsystems, IBM,

Microsoft, Veridian, Fujitsu, Hitachi and NEC. The Globus Alliance [GlA] was born from the joint

efforts of research and development groups of the Argonne National Laboratory (Illinois), the Uni-

versity of Southern California Information Sciences Institute, the University of Chicago, the Univer-

sity of Edinburgh and the Swedish Royal Institute of Technology. It is headed by Ian Foster and

Carl Kesselman, co-authors of the grid seminal paper [KF98]. Globus is an open-source and open-

architecture project that incorporates protocols and basic services for constructing grids. Furthermore,

it provides support to run applications taking advantage of any available grid computational power.

The Globus structure and basic elements are shown in Figure 2.1. As it can be seen, it builds upon

the grid fabric in order to provide the grid core middleware services.

Globus includes software for security, information infrastructure, resource management, data

management, communication, fault detection, and portability. It is packaged as a set of components

that can be used either independently or together to develop applications. Every organization has its

own modes of operation, and collaboration between multiple organizations is hindered by incompati-

bility of resources such as data archives, computers, and networks. The Globus Toolkit was conceived

to remove obstacles that prevent seamless collaboration. Its core services, interfaces and protocols

allow users to access remote resources as if they were located within their own machine room while
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Figure 2.1: Globus structure and services [AGl]

simultaneously preserving local control over who can use resources and when. The Globus toolkit has

grown through an open-source strategy and collaborative effort, similar in many ways to the Linux

operating system.

gLite [Gli] is the core grid middleware used by the CERN LHC experiments (Worldwide LHC

Computing Grid, WLCG) [wlc] and a very large variety of scientific domains. It was born from the

collaborative efforts of more than 80 people in 12 different academic and industrial research centers

as part of the EGEE Project [ege]. It was originally based on an early version of the Globus toolkit,

although since its creation gLite has evolve in a completely independent way. The gLite middle-

ware includes a complete set of services for building a production grid infrastructure. It provides a

framework for building grid applications tapping into the power of distributed computing and storage

resources across the Internet. gLite middleware is currently deployed on hundreds of sites as part of

the EGEE project and enables global science in a number of disciplines, notably serving, as above

mentioned, the WLCG project [Gli, wlc].

Nevertheless, operating systems underneath have no notion about the core grid middleware run-

ning on top (whether it is UNICORE, Globus or any other). Integration between grid middleware

and operating systems could make possible further different improvements, such as better individual

resource management and accurate job monitoring.
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Thus, the XtreemOS project [Mor07] has taken the first steps in this direction, introducing some

grid concepts into the Linux operating system. XtreemOS determines which new services should be

added to current operating systems to build grid infrastructures in a simpler way. In essence, the idea

behind XtreemOS is to integrate the core grid middleware into the operating system.

XtreemOS addresses many aspects regarding to grid services. Among those the following should

be highlighted:

• Support for virtual organizations.

• Provide the users with interface an tools similar to those that can be found o a traditional

computer.

• Abstraction from the hardware and secure resource sharing between different users.

• Robust, secure and easy-to-manage infrastructure for system administrators.

From a different point of view, a complete grid operating system could be built to improve the

deployment of grid middleware. In this sense, GridOS [PW03] is an operating system that makes a

regular computer more suitable for being incorporated into grid systems.

2.2.1.3 User level grid middleware

In 2002 the grid computing community adopted a unified orientation, based on a services model

[FKNT02]. This was subscribed with the definition of a new basic grid architecture, called Open

Grid Services Architecture (OGSA), by the Global Grid Forum (GGF). OGSA defines the necessary

mechanisms to provide both creation and maintenance of different services, offered within a multiple

Virtual Organizations (VO) framework.

The Global Grid Forum was an international organization in charge of defining standards for grid

computing protocols and services. It was created in Amsterdam in 2001 with the aim of becoming the

international forum about grid technology. Among its most important partners were universities and

research centers worldwide, along with companies such as IBM, Microsoft, Sun and HP. In 2006 the

GGF and the Enterprise Grid Alliance (EGA) joined efforts to create the Open Grid Forum [OGF].

The EGA was formed in 2004 to focus on the grid adoption in enterprise data centers. Nowadays

the OGF has two principal functions, being the first one development of grid standards, and second

helping to build communities and partnerships within the overall grid world, including extending it to

encompass wider participation from both academia and industry.
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In February 2003, the Global Grid Forum, the Globus Alliance and IBM proposed together a

convergence of grid computing technology towards Web services. Thus, the GGF defined OGSA

[FKNT02, FSB+06, ogs], the necessary architecture to provide grid services. OGSA defines the

services that must be offered by grid computing systems. More specifically it defines the following

service capabilities:

• Infrastructure services.

• Execution Management services.

• Data services.

• Resource Management services.

• Security services.

• Self-management services.

• Information services.

Specifically, grid services are a considerable extension of Web services. Web services can not

give support to grid applications because of the following limitations:

• They are stateless, that is, they are not persistent services.

• They do not give support to services, like notifications and life cycle management.

On the other hand, grid services have the following features:

• They are stateful. The state of the grid service is kept during invocations.

• They can be persistent. Some instances of the same services can be created at a given moment

destroying them when they are not necessary.

• They have support services.

Thanks to the relation between the OGF and Consortium for World Wide Web (W3C)2, grid

services have been fused with Web services (WS) in an single research line named WS-Resource

Framework (WSRF) [GKM+06]. WSRF provides access to stateful Web services.

2W3C was founded in October 1994 to promote the World Wide Web, developing standard protocols to ensure its
interoperability.
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Although there are many known grid projects related to computational power, like Worldwide

LHC Computing Grid (WLCG) and Enabling Grids for E-SciencE (EGEE), computing is not the

only important aspect of a grid. Other applications such as data access and utility computing are for

many applications more important than the access to high performance computing resources.

In short, grids can provide several types of services [BBL02]:

• Computing services. Grids can provide tools to run complex jobs on distributed computing

resources. Some examples of computational grids are NASA Information Power Grid (IPG)

[CFF+01], WLCG [wlc] and NSF TeraGrid [TeG].

• Data services. Grids can also provide secure data access and data management. Data can be

catalogued and replicated in order to manage it. A data grid offers an environment in which is

possible to manage huge data volumes in a distributed way. The projects European Data Grid

(EDG) [CFF+01] and CrossGrid [CrG] can be stood out among all the projects belonging to

this type.

• Application services. Another typical grid use is to provide application management and a

transparent access to remote software and libraries. They are built to use computing and data

services provided by the grid. A system used to develop such services is NetSolve [SYAD05].

• Information services. Most grids also include services designed to obtain and show informa-

tion observed and collected about computing performance, data access and application services.

• Knowledge services. These are referring to the way the system knowledge is acquired, used,

recovered and published to help to the users to fulfill its aims. The knowledge is understood as

information applied to reach an aim, solve a problem or make a decision.

In order to search, discover and select the most suitable services or resources an element (or set

of elements) containing information about the numerous grid resources is required. This element is

usually called broker [SFT00, Tor04]. The grid services capabilities depend on the way the broker

handles clients and resources. Brokering is a key aspect of modern service-oriented grids.

The way a grid is used and the user experience required are directly determined by the broker’s

operation and performance. Modern grid brokers identify, characterize, evaluate, select and reserve

the most suitable resources or services for a certain job, according to the user needs. However, brokers

can simply be traditional job allocators, simplifying its configurations and management, but losing

some interesting high-level features. In this sense, many queue managers used in other distributed

systems can be adapted to be applied in grid systems. Some examples of this adaptation are PBS and
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Figure 2.2: Brokering in a grid system

Condor-G [CoG], a grid specific version of Condor.

Different grid middleware projects include brokering mechanisms with different characteristics,

but most approaches can be classified in two possible groups:

• Client broker. This kind of broker is designed to handle client needs selecting the services

according to client requirements without having a global vision of other clients or service re-

quests. In client brokers most of brokering tasks are incorporated into the client software, in the

form of access and decision making libraries on top of which the application is build. A very

popular example of this approach is GridWay [HML05, HHML05, GWM]. This widely used

client broker can carry out the most usual brokering tasks required, such as resource assign-

ment, task migration and fault-tolerance. For GridWay the client-broker integration becomes

an advantage because it is more scalable and resistant to dynamic changes, since it focused only

on the needs of a single client. GridWay can be used as a part of Globus and/or gLite.

• System broker. In this case, the broker has a complete and global vision of all resources

and clients of the grid. Thus, it can select the most suitable resources for the client jobs with

the aim of improving the performance of the whole grid. System brokers usually operate as

independent entities, designed to communicate and interact both with clients and grid resources.

Nevertheless, it concentrates the decision making and consequent load on a single point, raising

dependability issues and creating a possible service’s bottleneck. To avoid these problems,
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broker hierarchies and other redundancy mechanisms have been proposed.

Nowadays the scientific community is working on improving different aspects of grid services.

Service scalability, introduction of autonomic computing techniques, global management improve-

ment and dependability related issues (fault tolerance, quality of service...) are important research

areas. This Ph.D. thesis is mainly focused on the second and third of these research lines. Although

several improvements can be performed, there are a large number of working projects, such as WLCG

[wlc], EGEE [ege], TeraGrid [TeG] and CrossGrid [CrG], that solve compute and data-intensive

problems. In addition, there are many finished projects that demonstrate that the grid technology

is possible, like GridSim [BM02a], IPG [JGN99], EDG [CFF+01], Gridbus (GRID computing and

BUSsines) [Gbu]. Among them EGEE and WLCG can be emphasized.

The Large Hadron Collider (LHC) is the CERN’s particle accelerator. The discovery of new fun-

damental particles, like specifically the Higgs boson or God particle3, is one of the most important

aims of the LHC. It is possible to know the existence of this kind of particles analyzing the properties

by means of a statistical analysis of massive amounts of data collected by the LHC’s detectors AT-

LAS, CMS, ALICE and LHCb. 15 petabytes per year is the data size expected to collect by the LHC

from 2007. Then, a comparison by means of compute-intensive theoretical simulations is required.

The analysis of this great amount of data means one of the most important scientific challenges in

the world. The aim of the Worldwide LHC Computing Project (WLCG) [wlc] is to build an analysis

infrastructure in order to understand this data. Furthermore, data has to be stored in a distributed way

since its size is too big to be stored in a single storage system. The WLCG project inter-operate with

other known grid projects, such as EGEE, Grid3 [GR3] and The Globus Alliance.

The Enabling Grid for E-sciencE (EGEE) [ege] project aims to develop a grid infrastructure that

is available to the geographically scattered scientist community to solve different kinds of complex

problems in different domains. EGEE tries to cover a wide-range of both scientific and industrial

applications, including Earth Sciences, High Energy Physics, Bioinformatics, Astrophysics and so

on.

Two pilot applications were selected to test the performance and functionality of the EGEE’s

infrastructure. Both the LHC Computing Grid and Biomedical Grids, where scientists facing with

bioinformatics and health-care problems, certify its use.

3The Higgs boson is the key particle to understand why matter has mass.
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The problem of this infrastructure is constituted by the fact that not all the grid requirements

stated by Foster [Fos02] are fulfilled. EGEE has stated several requirements that a researching center

must fulfill to join it to the initiative. The aim was to create quickly a simple grid infrastructure to

solve problems that do not have solution with other technologies. Thus, the most of computers used

in EGEE have the same architecture and operating system. Besides each VO or researching center

has lost some of control on its own resources, since there is a central organization that manages the

EGEE’s resources.

2.2.1.4 Grid Portals

To facilitate interaction between users and the system, grids can benefit from unified, user-friendly

access interfaces such as web portals. These tools make possible to access the grid from any location,

providing a easy to use, graphical interface to its services (job execution, data access, etc). Further-

more, the specific costs of grid software installation and setup in every client machine is eliminated,

as operations are carried out through a standard web interaction.

Most big grid projects include web portals that make different grid services available via web,

such as information services requests, file transference and job management. However, these inter-

faces are usually specific of each project. In addition, there are some initiatives trying to facilitate

grid web interfaces development, providing generic tools for grid portal construction that can be used

in different systems. Among these initiatives GridSphere and the OGCE portal and gateway toolkit

could be highlighted.

GridSphere [GSp] is a project to make easy the creation of Grid Portals based on portlets. A

portlet is a component that can be integrated in a portal web and works as a web application managed

by a central manager.

The OGCE (Open Grid Computing Environments) portal and gateway toolkit [ogc] is a set of

technologies designed to contribute in the development of scientific portals for computational grids

and cloud computing resources. By means of OGCE, developers can extend the functionality of a

web portal to run complex applications in a grid. OGCE has been used to develop scientific portals

and it is compatible with commonly used grid middleware software such as Globus.

2.2.2 Grid performance

Performance parameters such as throughput, network bandwidth or response time are typically

used in distributed systems. Grid operation can be observed using these metrics, but its special char-
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acteristics require for additional parameters to be considered, such as:

• Resource quality of service.

• Service availability.

• suitability of the process assignment to resources.

In short, it is very important to take into account the adaptation of applications to the infrastructure

knowing the principal features of a grid:

1. Diversity of resources.

2. Dynamism of resources.

Therefore, it is necessary to analyze the way the used resources have been selected, above all its

suitableness and efficiency.

[GWB+04] shows the required conditions that an analysis performance tool for grids must fulfill.

Grid performance analysis has special requirements, emphasizing:

1. Data acquisition should include both application and infrastructure monitoring, since grid per-

formance is determined by the configuration of the used resources and the running applications.

2. Monitors should have an intelligent part in order to filter and preprocess monitored data because

monitoring a grid can involve a great amount of data.

3. Monitoring techniques should be able to detect performance problems automatically from their

symptoms.

4. Monitoring tools should be able to be customized since a grid is heterogeneous and dynamic.

Grid benchmarking and grid monitoring are usual methods as a fisrt step to identify and under-

stand grid behavior.

2.2.2.1 Grid benchmarking

Benchmarks can be used to analyze grid performance, define the expected quality of service, eval-

uate resources assignment policies and compare service implementations or even complete systems.

The main effort in building standard grid benchmarks was mainly directed by the Grid Benchmarking

Research Group at the now extinct Global Grid Forum.
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Most grid benchmarks are computation intensive and based on NAS Parallel Benchmark4. Among

them, NAS Grid Benchmark [FdW02] and GridBench [TD03] can be emphasized. Among other

types, the Arithmetic Data Cube (ADC) [FS03] can be distinguished as the single known possibility

for data intensive grid benchmarking.

The NAS Grid Benchmark (NGB) [FdW02] is an intensive computing benchmark. The NGB

tasks are defined in terms of flow charts, where each node represents the computing elements and the

computing times within them, and each arch represents the communication between the computing

elements. The grid performance is calculated from operation logs, which include running times for

each node and transmission times in each arch. This benchmark is very useful to analyze the critical

path for a certain application.

GridBench is a benchmark definition tool for specific grid configurations, and requires these con-

figurations to be defined. In order to do it, GridBench has its own Grid Benchmark Description

Language (GBDL) [TD05] that can be automatically translated to other job description languages

like JDL (Condor) or RSL (Globus) commonly used in grid computing systems.

In order to be user-friendly, GridBench provides a graphical interface that allows to define and

execute benchmarks and analyze the obtained results. These results are based on the architecture

R-GMA defined for the project European Data Grid (see section 2.2.2.2).

GridBench benchmark results are stored in a XML database, along with the benchmark GBDL

definition. Besides, additional monitored data observed during the benchmark’s execution can be

included in order to enrich the results and improve the analysis. Benchmark results from desired

computing elements can be published in a monitoring and discovery service such as MDS (see sec-

tion 2.2.2.2), making its access easy to users and grid brokering systems.

Arithmetic Data Cube [FS03] is an application of Data Cube Operator in an arithmetic data set.

Data Cube Operator [GCB+97] is a tool of On-Line Analytical Processing5 that processes views of

a data set. ADC can be used as grid benchmark since it manages large distributed data sets. Further-

more, it is possible to control the intensity of the benchmark controlling the size of the views of the

arithmetic data set.

The main disadvantage of grid benchmarks is that they run using grid resources but the resources

4NAS Parallel Benchmark is composed of a set of 8 modules that evaluate the performance of parallel supercomputers.
5On-Line Analytical Processing (OLAP) provides quick answers to analytical queries in a database. It allows users to

discover patterns in a data set.
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assignment can constantly vary, due to the natural dynamism of the system. Resources are dynami-

cally selected according to an assignment policy. Thus, the benchmark results are only representative

for the specific selected resources in its execution. The resources selected do not have to be the same

in future benchmark executions and, even though the same resources were selected, its characteristics

can change from one execution to the next (as they are non-dedicated). This makes difficult to predict

grid performance taking benchmark results as a basis. The system variability and natural evolution

can render the benchmark results obsolete very quickly.

2.2.2.2 Grid monitoring

The other basic approach to observe and measure grid performance is grid monitoring. This

allows to obtain real-time behavior data, while the system is under production, with real resources,

services and users. Grid monitoring can be performed at different levels, such as:

• Specific of the application.

• Node or server level.

• Cluster or site level.

• Grid level.

The basic idea behind grid monitoring is just to observe and gather information. These data can

subsequently be studied using performance analysis and behavior modeling tools.

Several working groups within the Open Grid Forum, such as the Grid Monitoring Architecture

Working Group [GPW], have worked to build a monitoring architecture designed for the specific

components that characterize every grid platform. This architecture has been named GMA (Grid

Monitoring Architecture), and its basic structure can be seen in Figure 2.3. GMA defines producer,

consumer and registry elements. The producer registers its monitoring skill regarding a part of the

grid (set of resources, specific application, etc.) in the directory service (registry). The consumer

uses this directory service contained in the registry to locate those producers that provide the specific

monitoring information it requires. The producer is selected according to brokering policies. Finally,

the consumer communicates with the selected producer to obtain the necessary information.

Different architectures, like R-GMA [BCC+02], MDS [mds], Hawkeye [Haw] and NWS [nws],

based on the GMA generic architecture have been implemented.

Relational Grid Monitoring Architecture (R-GMA) [BCC+02, GMA] implements the GMA ar-

chitecture model defined by the Global Grid Forum by means of Java servlets and relational databases.
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Figure 2.3: Grid Monitoring Architecture (GMA) [GMA]

This makes transparent the details of the producer/consumer model to the user. It is used for searching

grid services and applications monitoring.

Monitoring and Discovery System (MDS) [mds] is the Globus Toolkit’s information services

component. It uses an extensible framework with a structure arranged in a hierarchical order to

manage static and dynamical information. It provides an information services architecture offering

mechanisms of resource discovery and monitoring.

MDS provides information about available resources in the grid and its state. It is often used in

order to publish some results obtained by means of benchmarks in a certain grid. In spite of being

a monitoring service, it is more used as discovery service, because it does not provide an historical

archive showing how system has evolved. Furthermore, it can be combined with other grid protocols

in order to build high-level services, like brokering and fault tolerance.

Hawkeye [Haw] is the Condor-G scheduler monitoring system. It combines the Globus’s resource

management with local management Condor methods. Hawkeye provides mechanisms for job moni-

toring, notification, etc. The main advantage of Hawkeye is that it is designed to automatically detect

security and dependability issues and other possible problems. It is based on Condor’s ClassAd tech-

nology, which identifies and characterizes the resources available in a set of machines. ClassAds are

based on <attribute,value> pairs that are used to automatically determine if a resource fulfill the re-

quirements of a certain application.

The Network Weather Service (NWS) [nws] was created by the University of California. It is a

distributed system that monitors periodically the system and forecasts the performance of the com-

puting resources and network load at any given time.
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MonALISA (Monitoring Agents using a Large Integrated Services Architecture) [NLB01, NLG+03,

mal] provides a distributed service to monitor, control and optimize complex systems. The combi-

nation of a service based architecture with the utilization of mobile agents facilitates the creation of

a services hierarchy that can be easily expanded to manage very complex systems, like grids. The

scalability of the system is achieved thanks to an engine that runs several dynamic services. These

services can be discovered and used by other users or services that need the information they provide.

Thus, there are two kind of services or agents: data collector agents (monitor service) and decision

making agents (aggregation service).

The monitoring system performs real-time supervision of grid elements, network and running pro-

cesses. Collected information is essential when high-level services are developed, especially when

it is needed to make decisions regarding grid performance optimization. Different monitoring tools

can integrated in MonALISA as low-level monitoring modules to collect information about grid re-

sources.

GMonE (Grid Monitoring Environment) [Sán08] is a monitoring framework for large-scale dis-

tributed systems based on the publish-subscribe paradigm. GMonE runs a process called resource

monitor on every grid node to be monitored. Each such node publishes monitoring information to

one or more monitoring archives at regular time intervals. These monitoring archives act as the sub-

scribers and gather the monitoring information in a database, constructing a historical record of the

system’s evolution. The resource monitors can be customized with monitoring plugins, which can be

used to adapt the monitoring process to a specific scenario by selecting relevant monitoring informa-

tion.

2.3 Cloud computing

After the development of the grid in the last 15 years, Cloud computing emerged in 2006 as a

new distributed computing paradigm. Cloud computing [Wei07] promises to provide reliable ser-

vices, delivered through next-generation data centers, and built over virtualized compute and storage

technologies. The idea is to make possible for users (also called consumers, as Cloud computing is

strongly market-oriented) to access applications and data from a cloud, anywhere in the world and on

demand. The consumers are assured that the Cloud infrastructure is sufficiently robust, guaranteeing

availability at any time.

As can be seen, this generic concept of Cloud computing, if analyzed carefully, incorporates ele-
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ments such as highly reliable, scalable and autonomic services, ubiquitous access, dynamic discovery,

etc. In particular, Cloud computing presents itself as a very market-oriented infrastructure, where ser-

vices are exploited from an economic perspective and, therefore, quality of service becomes a matter

of capital importance.

From a scientific point of view, there have been several attempts to define Cloud computing [Clo],

and the subject is still a matter of discussion at some levels. Nevertheless, most part of the scientific

community seems to agree in an intuitive idea of what Cloud computing is, and what could be ex-

pected of it. A possible definition of this new distributed paradigm could be (from [FZRL09]):

Cloud computing is a large-scale distributed paradigm that is driven by economies of scale, in

which a pool of abstracted, virtualized, dynamically-scalable, managed computing power, storage,

platforms and services are delivered on demand to external customers over the Internet .

There are several key points in this definitions. First, Cloud computing is a specialized distributed

computing paradigm. It differs from other distributed systems in that i) it is massively scalable, ii) can

be encapsulated as an abstract entity that delivers different levels of services to customers outside the

Cloud, iii) it is driven by economies of scale [Sil87], and iv) the services can be dynamically config-

ured (via virtualization or other approaches) and delivered on demand [FZRL09].

Based on current Cloud computing industrial and research projects, its four main characteristics

can be distinguished:

• Elasticity and scalability. The cloud is elastic, meaning that resource allocation can get higher

or lower on demand. Elasticity enables scalability, enabling the cloud to gracefully accept

increasing computational demands.

Figure 2.4: Cloud computing and some related ideas included in it.
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• Self-service provisioning. Cloud customers can provision cloud services without going through

a lengthy process. Users request an amount of computing, storage, software, process, or more

from the service provider. After these resources are used, they can be automatically deprovi-

sioned.

• Standardized interfaces. Cloud services should have standardized APIs, which provide in-

structions on how two application or data sources can communicate with each other. A stan-

dardized interface lets the customer more easily link cloud services together.

• Billing and service usage metering. Users can be billed for resources as they use them. This

pay-as-you-go model means usage is monitored and users pay only for what they consume.

2.3.1 Cloud layers

The Cloud computing paradigm is organized in the following five distinguished layers:

1. Client: A cloud client is a computer hardware and/or computer software that relies on cloud

computing for application delivery. Examples include some computers, phones and other de-

vices, operating systems and browsers.

2. Application: Cloud application services or Software as a Service (SaaS) deliver software as

a service over the Internet, eliminating the need to install and run the application on the cus-

tomer’s own computers and simplifying maintenance and support.

3. Platform: Cloud platform services or Platform as a Service (PaaS) deliver a computing plat-

form and/or solution stack as a service, often consuming cloud infrastructure and sustaining

cloud applications. It facilitates deployment of applications without the cost and complexity of

buying and managing the underlying hardware and software layers.

4. Infrastructure: Cloud infrastructure services or Infrastructure as a Service (IaaS) delivers

computer infrastructure, typically a platform virtualization environment, as a service. Rather

than purchasing servers, software, data center space or network equipment, clients instead buy

those resources as a fully outsourced service.

5. Server: The servers layer consists of computer hardware and/or computer software products

that are specifically designed for the delivery of cloud services, including multi-core processors,

cloud-specific operating systems and combined offerings.
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2.3.2 Cloud computing projects

Since its conception, cloud computing has been a strongly market-oriented initiative, with wide

acceptation in the industry and private sector. This has motivated many leading private companies

(Amazon, Google, IBM, Microsoft, etc) to develop and offer cloud-based computing solutions. Si-

multaneously, cloud computing is being also developed within scientific research projects and open

source initiatives.

The Amazon Elastic Compute Cloud (commonly known simply as Amazon EC2) [ec2] is prob-

ably the first well known Cloud computing initiative. As stated in Amazon’s own web site, “EC2

is a web service that provides resizable compute capacity in the cloud. It is designed to make web-

scale computing easier for developers”. A user can create, launch, and terminate server instances as

needed, paying by the hour for active servers, hence the term elastic. EC2 provides users with control

over the geographical location of instances which allows for latency optimization and high levels of

redundancy.

Google App Engine [app] is a platform for developing and hosting web applications in Google-

managed data centers. It was first released as a beta version in April 2008. Google App Engine is

a cloud computing technology. It virtualizes applications across multiple servers and data centers.

Google App Engine is a free service, up to a certain level of used resources. Fees are charged for

additional storage, bandwidth, or CPU cycles required by the application.

Microsoft’s Azure Services Platform [azu] is an application platform in the cloud that allows ap-

plications to be hosted and run at Microsoft datacenters. It provides a cloud operating system called

Windows Azure that serves as a runtime for the applications and provides a set of services that allows

development, management and hosting of applications off-premises. All Azure Services and applica-

tions built using them run on top of Windows Azure.

abiCloud [abi] is an open source Cloud computing platform manager that allows to easily de-

ploy a private cloud infrastructure. One of its key features is a rich Web interface design to make

easy the system management tasks. In abiCloud users can deploy a new service just dragging and

dropping a virtual machine. It allows to deploy instances of general purpose virtual machines such

as VirtualBox, VMware, KVM, and Xen. It features user management through ACL, infrastructure

and network management, an appliance repository, and the ability to easily design virtual data centers.

OpenNebula [ope, SMLF08] is an open-source toolkit to easily build cloud infrastructures of

three types: private, public and/or hybrid. OpenNebula has been designed to be integrated with any
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networking and storage solution and so to fit into any existing data center. OpenNebula orchestrates

storage, network and virtualization technologies to enable the dynamic placement of multi-tier ser-

vices (groups of interconnected virtual machines) on distributed infrastructures, combining both data

center resources and remote cloud resources, according to allocation policies.

Nimbus [KF08] is a set of open source tools that together provide an "Infrastructure-as-a-Service"

(IaaS) cloud computing solution. Its developer’s objective is to evolve the infrastructure with empha-

sis on the needs of science, but many non-scientific use cases can be supported as well. Nimbus

allows clients to lease remote resources by deploying virtual machines (VMs) on those resources and

configuring them to represent an environment desired by the user.

RESERVOIR (REsources and SERvices Virtualisation withOut barrIeRs) [RBL+09] is a Cloud

computing research project partly funded by the European Commission as an Integrated Project under

the Seventh Framework Programme (FP7) sponsorship program. According to the project descrip-

tion, their goal is “to support the emergence of Service-Oriented Computing as a new computing

paradigm. In this paradigm, services are software components exposed through network-accessible,

platform and language independent interfaces, which enable the composition of complex distributed

applications out of loosely coupled components.”

2.3.3 Cloud computing and the grid

A crucial question that was raised by many voices shortly after the cloud became an established

paradigm was if there was really something new in Cloud computing and, more specifically, which

were the differences between it and the previously existing concept of grid computing. On the one

hand, a quick comparison shows many similarities between both initiatives, something that from the

beginning led to some people to suggest that the cloud was nothing but the grid, simply presented

from a new, market-oriented, perspective. Other voices, on the other hand, claimed that, although

grids and clouds are both large scale distributed initiatives and therefore share many basic character-

istics, cloud computing introduces several key aspects, creating a whole new paradigm. It is important

to indicate that not only grid and cloud, but other similar large scale distributed computing concepts

such as utility computing and Internet computing are also involved in this debate.

So, is Cloud computing just another name for grid? Evidently that question does not have a

straightforward answer, as many aspects have to be considered. Both paradigms share a common

vision: “to reduce the cost of computing, increase reliability and increase flexibility by transforming

computers from something that we buy and operate ourselves to something that it is operated by a

third party” [FZRL09]. However, there are important differences, especially when considering archi-
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tectural aspects. Grid computing, on the one hand, is about independent institutions all around the

world sharing resources in an harmonious way, and therefore it deals not only with large scale dis-

tribution and scalability issues but incorporates elements regarding security, trust between partners,

decentralized control and so on. Cloud computing on the other hand, bases its infrastructure on large

scale distributed data centers, in most cases centrally managed by an unique company (like Amazon

in the case of EC2 or Google in the case of the Google App Engine). These centralized computing

resources are nevertheless of a very large scale, and therefore its managers are faced with scalability,

distribution and other related issues, as in the case of the grid. However, this more controlled (to some

extent) environment allows cloud service providers to develop more reliable low-level infrastructures

and therefore focus on high-level service related issues and its market-oriented model.

Nevertheless, most grid and cloud problems are still the same. Both need to be able to man-

age large scale (yet somehow different) facilities. They both need to define methods by which

users/consumers discover, request and use resources provided by the system. Additionally, they both

need to provide the users/consumers with the necessary mechanisms to develop the often highly par-

allel computations that execute on those resources.

The high expectations created by the grid community at its conception led over the years to

disappointment and criticism, when many realized that the required efforts to create the grid were

too great. In this sense, Cloud computing could be regarded as a compromise, where some of the

technologically more challenging problems that grid computing created are eliminated by basing

the cloud on a simpler infrastructure. This apparent simplification has led to the creation of new

interesting platforms that provide grid-like services (specially if we remember the electric power

grid analogy [KF98]), with very promising scientific but most of all commercial results. But in a

world where everything in computer science is moving towards a totally distributed, shared model

(the popularity of, for instance, the Wikipedia project and the peer-to-peer systems are living proofs

of this trend) it does not seem logical to expect that data center based, centralized structures such as

most current commercial clouds (Amazon EC2, Google App Engine, OpenNebula, etc.) should not

in time evolve into a more widely distributed, resource-sharing approach.
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Chapter 3

Autonomic computing

With the development of the grid and other large scale distributed initiatives, computing systems have

made considerable advancements in the last two decades. Along with this advance, software tools

and services become more and more sophisticated, causing a continuous increase of complexity in

information technologies.

This incessant complexity growth, the introduction of different system standards, and the exis-

tence of new distributed and heterogeneous infrastructures make system management an extremely

complicated task. In the end, it could lead to a evident loose of performance due to the difficulty to

know and handle all the features of the infrastructure.

In addition, it is necessary to take into account the physical and logical continuous growth of

the system. For instance, the number of users that access a server can change in an unpredictable

way. The human participation and/or control of the system’s managing becomes a very costly task.

Additionally, sometimes it is not possible (or extremely complicated) to monitor the whole system

in order to manually control the whole system and adapt its services and applications to its variable

characteristics.

At the beginning of the year 2002, aiming at finding ways to handle this growing complexity,

the idea of autonomic computing was conceived [IBM06, RAC]. The concept was created by IBM

as a way to enable infrastructures to automatically adapt themselves to the demands of the applica-

tions running on them, and therefore increasing the system’s performance. Other related previous
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proposals, based on similar ideas, were self-healing technology, adaptive architecture, introspective

computing and holistic computing.

The idea of self-healing technology [HL03] was created in 2001 by Intel, Shindy and F5 to des-

ignate the intelligent software responsible of warning in case of applications running near to the

maximum capacity. There is a similar software offered by Concord Communications that automati-

cally fits the network connections according to the current characteristics of the network.

Adaptive infrastructure [Hoo05] is the HP’s contribution to the construction of self-managing in-

frastructures and autonomic systems. This approach has been implemented in the HP Utility Data

Center managing the whole pool of resources of a data center in a dynamic way.

The idea of introspective computing [Isa02] was conceived as a dynamical adjustment of algo-

rithms that run in a system from a previous analysis of it. Different enhancements can help to this

adaptation, such as power saving or fault tolerance.

Holistic computing was the IBM’s previous idea, just before autonomic computing. The aim of

this sort of computation was to check and control database systems, trying to get a better efficiency.

Autonomic computing unites all these previous concepts and approaches in a single one: sys-

tem self-adaptation in changing, heterogeneous environments, incorporating learning skills. Auto-

nomic computing was inspired by biological systems, more specifically on the human central nervous

system. This system performs multiple tasks, but human beings are not conscious of all of them

and, more important, do not take part in its decisions. Some of the most important tasks performed

are blood pressure reviews, control of the cardiac frequency, adjustment of the body’s temperature,

management of the food digestion and so on. All these tasks are carried out in an unconscious, au-

tonomous fashion. In fact, the central nervous system is able to attend to all these tasks and other

more important ones concurrently and with a high level of dependability. Moreover, it is also capable

of adapting itself to the changing corporal needs. Following these inspirations, autonomic computing

aims at the construction of a computing system that works in a similar way to the central nervous

system: transparent, reliable and adaptable self-management.

Autonomic computing refers to systems that are capable of self-managing according to changes

occurred in the environment, and they can heal and protect themselves in case of failure or attack.

This kind of computation requires much less human intervention regarding the system’s management

and configuration. Nowadays, the biggest problem of most large scale systems is to define its ideal
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configuration parameters in order to maximize aspects such as performance, dependability and/or

quality of service. System administrators and/or application programmers are usually in charge of

deciding the value of these parameters. In many cases, these values are not easy to define, since they

depend on the knowledge that the administrator has about how the system works. Besides, in order to

obtain maximum performance any given application, if running on different infrastructures, may need

a drastically different configuration. Even more, the system characteristics can be dynamic, requiring

for the configuration to be modified depending on system conditions.

As a summary, autonomic computing attempts to provide a system with the necessary capabilities

to self-manage, automatically adapting to changing conditions in the environment, continuously op-

timizing its configuration parameters and repairing itself in case of failure. All this is made possible

by these newly acquired autonomic skills, and without any human control or intervention. Therefore,

autonomic computing requires the design of systems that are capable of adjusting themselves accord-

ing to the changing conditions of the environment and manage its resources in an efficient way, facing

different, unpredictable workloads.

3.1 Autonomic elements

In [Hor01] it is emphasized the urgency of “. . . design and build computing systems capable of

running themselves, adjusting to varying circumstances, and preparing their resources to handle most

efficiently the workloads we put upon them. These autonomic system must anticipate needs and allow

users to concentrate on what they want to accomplish rather than figuring how to rig the computing

systems to get them there . . . ”

In order to focus on this idea, it is important to understand the nature of autonomic computing. In

[Hor01], IBM, one of the most active supporters of autonomic computing, defines the following eight

key elements of this discipline:

1. “To be autonomic, a computing system needs to ‘know itself’ - and comprise components that

also possess a system identity”. An autonomic computing system is aware of all its components

and their status and it must able to act on them.

2. “An autonomic computing system must configure and reconfigure itself under varying and un-

predictable conditions”. The environment in which an autonomic computing system works is

dynamic, and according to these dynamic conditions, the autonomic computing system must be

able to reconfigure itself. Although the conditions are unpredictable, it is possible and desirable
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to use a system that can predict, in some sense, the future behavior. In this way, the configu-

ration makes feasible the performance enhancement. Besides the system adjustment must be

carried out in a constant way. Like this the system must adapt itself to the environment in the

best possible way at any time.

3. “An autonomic computing system never settles for the status quo - it always looks for ways

to optimize its workings”. An autonomic computing system monitors the overall status of the

system and decides, according to an optimization plan, the parameters to be changed.

4. “An autonomic computing system must perform something skin to healing - it must be able to

recover from routine and extraordinary events that might cause some of its parts to malfunc-

tion”. For doing it, it can make use of the available resources without interrupting the activities

being performed by them. In case of failures that can not be handled by the system, like a

hardware failure, it must present the administrator with the proper warning. In short, an impor-

tant feature of an autonomic computing is its ability for self-healing: a system must be able to

identify the problems causes and, if possible, solve them.

5. “A virtual world is no less dangerous that the physical one, so an autonomic computing system

must be an expert in self-protection”. An autonomic computing system must protect itself from

attacks, detecting them and alerting system administrator in case of danger. In the same way

the human immune system works, an autonomic system must be able to identify suspicious

code, analyze it and distribute a cure for the whole system.

6. “An autonomic computing system knows its environment and the context surroundings its activ-

ity, and acts accordingly”. An autonomic computing system must be able to discover resources

and obtain information about them. Furthermore, according to the information of its neighbors,

the system makes decisions.

7. “An autonomic computing system cannot exist in a hermetic environment”. An autonomic

computing system interacts in an open and heterogeneous environment with other elements by

means of open standards. This feature is especially compatible with the grid philosophy (see

Section 2.2).

8. “Perhaps most critical for the user, an autonomic computing system will anticipate the op-

timized resources needed while keeping its complexity hidden”. An autonomic computing

system must be able to act in advance and in a optimized fashion in order to maintain and

increase the system performance. This ability must be transparent to the user. The final aim

is clear: users have to achieve their aims without worrying about the system operation and its

implementation.
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Figure 3.1: Autonomic computing principles [RAC]

In order to achieve all these features, four generic principles (see Figure 3.1) are embedded into

any autonomic computing strategy [IBM06, KC03], namely:

1. Self-configuration, that is, the ability for configuring itself according to high-level policies.

The components are adapted dynamically to the system changes. The aim is the flexible adjust-

ment to the environment, being able to face diverse workload and variable resources.

2. Self-optimization, that is, the capability to seek ways to control and enhance performance. The

system monitors all available resources and it makes decisions to optimize the system operation

according to the information obtained.

3. Self-healing, that is, the feature that allows the system to detect, diagnose and repair hardware

and software problems. This skill means discovering, diagnosing and reacting when faced with

system failures, according to the policies indicated by the administrator.

4. Self-protection, that is, the ability for preventing the system against possible attacks. In fact, it

must detect them and act as necessary.

3.2 Autonomic levels

To measure the autonomic level of a given computing system, a scale from manual to autonomic

it is defined in [RAC] (see Figure 3.2). Each level incorporates new features that replace certain areas

of human intervention and decision. It is important to emphasize that complexity is present at all

system levels, hardware, software and management [GC03].
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Figure 3.2: Maturity levels of autonomic computing [RAC]

1. The most basic level requires of the administrator to configure, supervise and keep manual

control over the system.

2. The second level or managed level takes advantage of personal tools to analyze system compo-

nents, using the results for making decisions.

3. The third level or predictive level adds new structures to the supervision tools. Now, the system

can suggest recommendations being the administrator responsible of approving and making the

needed actions.

4. In the fourth level or adaptive level, the system is taking more responsibilities about decision

making. The administrator is in charge of setting the policies that the system must obey.

5. The autonomic level is the fifth level. The system must take into account the high-level policies

adapting itself in the specified way to the environment.

Many autonomic projects have appeared in the last decade, as first attempts to test some of the

characteristics of autonomic computing. Developing complete autonomic solutions is, however, an

extremely complicated task, with many different areas of computer science involved. The involve-

ment of powerful entities (leading private companies and important research institutions) is required

in order to fully develop the autonomic computing potential. Nowadays, IBM [IBM03], HP and

Microsoft are strongly involved in the development of this technology, creating new products for all

levels of the system.
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3.3 Autonomic projects

In April 2003, IBM, widely considered as the father of autonomic computing, announced the first

project to develop new management tools in order to design autonomic systems capable of control

complex computing environments [GC03].

To extend the autonomic computing approach within the industry and scientific community, it is

indispensable to develop basic tools and common standards. In its seminal project, IBM proposes

a set of technical guides that should be implemented in order to make the joint work possible with

efficiency. The easiest way of reaching this goal is by using open specifications. The IBM project

developed a common terminology for autonomic systems. Furthermore, it tried to use common stan-

dards in other fields, such as Open Grid Services Architecture (OGSA) in grid computing (see Section

2.2), in order to define the autonomic management of complex systems.

Besides this project, IBM has developed some tools in order to help in the creation of autonomic

systems, namely:

• Log & Trace Tool is designed to facilitate the understanding of failure reasons in the system.

It translates data from different system components to a common format that is accessible in a

subsequent monitoring phase. The tool helps the administrator to identify the cause of a given

problem. In addition, it can make easy the development of self-healing skills.

• Agent Building and Learning Environment (ABLE) is an autonomic technology based on Java

for the creation of intelligent agents. Due to the adaptation of agents to heterogeneous environ-

ments, ABLE is very useful to develop autonomic system features.

• Autonomic Monitoring Engine is designed to reduce the complexity of heterogeneous infras-

tructures. It can detect failures and potential problems before they affect the system behavior.

It has self-protecting skills making possible for the system to automatically solve critical situa-

tions.

• Business Workload Management is a tool that helps to avoid bottlenecks by measuring different

parameters like reaction times. Later, it adjusts the resources configuration to achieve its goals.

Nevertheless, although there are tools to develop autonomic systems, the techniques applied to

provide autonomic capabilities are not standard and they depend on the domain and the tackled prob-

lem.
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Nowadays, there are several initiatives and projects with the aim of providing autonomic skills

and testing autonomic concepts. IBM and Sun are two of the most active companies that support the

autonomic development with some of their projects, such as z/Os, WebSphere, DB2, Tivoli and N1.

Meanwhile, different universities and researching centers are using the autonomic concepts to built

its own infrastructures, like VIOLIN [JX04, RMX05], Autonomic Virtualized Environments [MB06],

Self-* Storage system [GSK03], Kendra [McC03] and Application Performance Prediction and Au-

tonomic Computing [MK04]. More autonomic projects are listed in [ACo].

3.3.1 VIOLIN

Since current network infrastructures are slowly adapted to changes, virtual networks can be de-

signed as service-oriented added value networks. These networks provide efficiency and flexibility,

although they have a hard use because the accumulation of both network and service functions. VIO-

LIN [JX04, RMX05] is a project of the Purdue University published in 2004 that proposes a Virtual

Internet working on OverLay INfrastructure (VIOLIN) to solve the overload of the application level

and its adaptation to dynamic changes.

VIOLIN creates virtual networks that operate as an overlay of real infrastructures, such as Plan-

etLab [pla]. They are composed of software-based virtual routers, switches and end-hosts. Its main

characteristics are:

1. Each VIOLIN network is a virtual world. Thus, its communications are limited to this network.

2. All network elements can be created and deleted on demand, being automatically adapted to

the corresponding circumstance.

3.3.2 Autonomic virtualized environments

According to the autonomic computing group of the George Mason University, autonomic tech-

niques can be applied to decide which computing resources must be allocated to any virtual machines

as the system workload changes [MB06].

The objective of this project is to find an optimum usefulness function that helps to make these

assignments in virtual environments, being CPU resources considered as the main value to share. It

proposes two ways of modeling the problem. First, all tasks belonging to the same virtual machine

have the same priority. Thus, the scheduler only takes into account the different priorities among

virtual machines. On the other hand, the system can be modeled by means of virtual CPUs, allocat-

ing a virtual CPU to each virtual machine. The assignment is not carried out by means of priorities
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but fitting the time that every virtual CPU can run in the real CPU. Both models are valid, though the

second one obtains improved performance taking advantage of the available CPU time in a better way.

Nowadays this is a very important research line in distributed systems, mainly because virtualized

environments have become one of the key aspects of grid computing and specially Cloud computing.

3.3.3 Self-* storage system

Self-* storage system [GSK03] is a project developed in the Carnegie Mellon University. It de-

signs a cluster-oriented storage file system that provides self-organizing, self-managing, self-healing

and self-configuring capabilities. It is based on both artificial intelligence and system control. The

low cost of cluster components and resources quality benefits the system reliability and availability.

Self-* storage system is in charge of storing files in the corresponding cluster node. Files are

split in chunks storing it in an adapted way to the operation of every storage brick. This adaptation is

mainly directed to obtain fault-tolerance, although it is possible to define other goals.

3.3.4 Kendra

Kendra [McC03] is based on the idea that metadata allows Internet searches to be more efficient

and provides useful information for data distribution and decision systems.

Kendra’s decision making module supervises the Internet operation and makes decisions trying

to optimize the information delivery according to the available resources at each moment. In order

to facilitate its adaptability, a set of adaptable components can be run on demand. These components

enable optimistic and pessimistic configurations. This project was tested with audio servers creating

the Kendra initiative to promote a distribution market of open digital contents.

3.3.5 Application performance prediction and autonomic computing

This project [MK04] from Clemson University refers the use of prediction as an integral part of an

autonomic system that monitors, analyzes and controls. A self-managed system can use predictions

to develop an analysis of the system to determine the ideal resource configuration dynamically.

In order to prove this approach, they predicted a web application performance taking into account

an end-to-end model for each client-server including the network influence. The prediction was based

on an stochastic model about the operation of the TCP protocol. The inputs were the sending time

and the lost time by the TCP protocol and the output was the performance obtained by means of the
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throughput achieved by a TCP flow in steady state. Finally, they built a model that described the

application behavior according to the predicted workload of network and server.

3.3.6 z/OS

z/OS is the IBM eServer zSeries’s operating system, and it is the successor of the IBM mainframe

operating system OS/390. z/OS incorporates autonomic computing features. First of all, it uses msys,

a system management infrastructure that offers self-configuring skills. msys significantly simplifies

the task management for software setup. Besides msys simplifies the daily operations of a parallel

system z/OS. This cause that the operation complexity is reduced, minimizing the number of errors

and the workload.

The self-optimizing skills provided by the Workload Manager (WLM) and the Intelligent Re-

source Director (IRD) allows the system to manage unforeseeable workloads with not much human

intervention.

3.3.6.1 WebSphere Application Server

WebSphere Application Server (WAS) makes autonomic computing skills possible to use both

for z/OS and for multi-platforms. Thus, it can be used in diverse work environments, such as grid

computing and Web services. In general, WAS can be seen as a Web service compatible with Java

that provides self-management.

3.3.6.2 DB2 Universal Database

DB2 for z/OS is constructed to be a suitable e-business infrastructure. In this environment, it is

necessary to provide database self-management capabilities. DB2 for z/OS can take advantage of the

autonomic features of the own operating system. DB2 provides the needed functionality to simplify

the database parameters, and therefore it makes easier the self-configuring procedures.

Besides an improvement based on the search of minimizing the cost of request in the database is

used. The system tests the performance of different operations, comparing different factors such as

table accesses using different techniques. The least costly operation is used in the following request.

To improve the requests, Materialized Query Tables (MQT) are also used. They accelerate the

process storing a summary of the contained data. The system can automatically reformulate the

request to use the information summarized in the MQT. Using the summarized information it is

possible to improve requests.
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3.3.7 Tivoli

The software of system management is the central point of many functions of autonomic comput-

ing, especially due to the need to supervise conditions inside systems. Tivoli indicates the steps that

are necessary to give to make progress in the different levels of an autonomic system.

Tivoli tries to reduce the complexity and provides the self-management capacity. For doing it

there are some different programs based on Tivoli:

• Tivoli Identity Manager is a self-protecting software. It gives automatically the users’ rights to

access to resources, increasing the security.

• Tivoli Privacy Manager makes automatic the use of policies. It offers self-protecting according

to high-level policies.

• Tivoli Storage Resource Manager tries to manage the data storage in an efficient way. It reduces

the total cost of the data storage.

• Tivoli Service Level Advisor stores data in order to make data predictions, providing self-

optimization features. It manages resources taking into account their availability and System

Level Agreements (SLA).

• Tivoli Configuration Manager can make the process of installing and distributing software in

an autonomic way.

• Tivoli Business Systems Manager simplifies the management of critical systems managing

problems in real time according to high-level policies.

3.3.8 Sun’s N1

N1 is a long term vision and an architectural model to reduce the complexity of the data centers.

Thanks to N1 the systems can manage its own complexity. N1 includes hardware, storage and differ-

ent kinds of services. Thus, N1 is an integrated system, making difficult its installation on any device.

The idea of N1 is unifying the resources, both storage and computing resources, in a similar way

the grid computing works. The platform makes possible to turn a workcenter into a single system.

N1 has three functionality targets:

1. Infrastructure provisioning.
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2. Application level provisioning.

3. Service level automation.

Besides Sun is working in a dynamic resource provisioning.

All these ideas have been implemented in the following software programs:

• Sun N1 System Manager: it simplifies the development cycle of an infrastructure for the servers

Sun Fire x64 and SPARC.

• Sun Management Center: It reduces the support cost and provides monitoring and self-management

of established systems.

• Sun N1 Grid Engine: it distributes the workload of the applications that need more resources in

an grid environment taking control of the used resources and providing the necessary security.

These programs reduce the complexity of new computing infrastructures.
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Chapter 4

Statistical and knowledge discovery
techniques

Autonomic management should be based on deep knowledge of the system’s behavior. Understanding

this behavior means to carefully studying it, observing and analyzing its evolution. During this pro-

cess, the information obtained must be processed through several phases, aimed at extracting useful,

non-trivial knowledge that throws new light over issues such as performance, dependability, secu-

rity, etc. One of the most common ways of developing these phases is the use of statistical and data

mining tools and methodologies. These techniques allow us to handle the large volumes of data that

observation of a large scale system such as a grid can generate, identifying underlying knowledge and

behavior patterns.

Modeling and characterizing the behavior of large scale distributed systems by means of sta-

tistical and knowledge discovery techniques have been approached in several other contexts. The

most basic approach is benchmarking [DG93], which enables analysis of the system behavior un-

der different workloads. Other approaches describe the system formally using Colored Petri Nets

(CPN) [BvdAST08] or Abstract State Machines (ASM) [Gur91] in order to reason about behavior.

Rood and Lewis [RL07, RL08a, RL08b] propose a multi-state model and several analysis tech-

niques in order to forecast the resources availability, aiming at improving scheduler efficiency.

Li et al. [LGW07] present an Instance Based Learning technique to forecast response times of
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jobs in large scale systems by means of historical performance data mining. In a similar way, Smith

et al. [SFT04] analyze the run times of parallel applications from past executions of similar applica-

tions. Cho et al. [CKL08] describe a user demand approach, which employs historical user demands

in order to efficiently manage system resources. All these contributions are focused on user jobs or

user demands.

Barham et al. [BDIM04] propose Magpie, a toolchain for automatically extracting a system’s

workload under realistic operating conditions. Magpie is based on low-overhead instrumentation, in-

corporated to monitor the system and record fine-grained events generated by kernel, middleware and

application components. In a more machine learning based approach, Cohen et al. [CZG+05] present

a method for automatically extracting from running systems an indexable signature that distills the

essential characteristics of the system state. Finally, in the same line Pan et al. [PKT+09] propose a

tool for black-box diagnosis of MapReduce systems, aimed at discovering problems and bottlenecks.

As can be seen, current state of the art in these matters shows that many different approaches can

be taken regarding this issue. In this chapter, detailed descriptions of the most relevant statistical and

knowledge discovery techniques that can be applied to grid behavior modeling are presented.

4.1 Information representation and attribute analysis

In order to achieve a successful data analysis, information should previously be arranged and

correctly represented. Selecting a correct, meaningful representation format is a key first step in any

knowledge extraction process, providing useful insight on aspects such as data structure, information

variability, parameter dependences, and so on. The way information is represented influences all

the subsequent process, leading, if correctly performed, to successful results. It could be said that

the main objective of information representation is to format the data in a way that relevant facts

can be more clearly distinguished, hiding or eliminating irrelevant information that could lead to

imprecision in further analysis. However, it can contribute in many other aspects, such as providing

the ideal information structure to improve the automated mathematical analysis performance, even

reducing algorithms complexity in some cases.

4.1.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [Pea01] is a mathematical procedure designed to transform

a number of possibly correlated variables into a possibly smaller number of uncorrelated variables,

called principal components. These components are generated in a specific order, making the first
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one to account for as much of the variability in the data as possible. Following the given order, each

succeeding component accounts for another part of the remaining variability, in decreasing sizes. The

total sum of the amount of variability represented by all components is always 100%, guaranteeing

no loss of information.

PCA is mostly used as a tool in exploratory data analysis and for making predictive models. PCA

involves the calculation of the eigenvalue decomposition of a data covariance matrix or singular value

decomposition of a data matrix, usually after mean centering the data for each attribute.

PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can

be thought of as revealing the internal structure of the data in a way which best explains the variance

in the data. If a multivariate dataset is visualized as a set of coordinates in a high-dimensional data

space (1 axis per variable), PCA supplies the user with a lower-dimensional picture, a shadow of this

object when viewed from its (in some sense) most informative viewpoint.

4.1.2 Virtual representation of information systems

The role of visualization techniques in the knowledge discovery process is well known. The in-

creasing complexity of the data analysis procedures makes it more difficult for the user to extract

useful information out of the results generated by the various techniques. This makes graphical repre-

sentation directly appealing. Data and patterns should be considered in a broad sense. The increasing

high rates of data generation emerging from the grid require the development of procedures facilitat-

ing the understanding of the structure of this kind of data rapidly, intuitively and integrated within a

monitoring tool.

Virtual reality (VR) is a suitable paradigm for visual data mining. It is flexible: allows the choice

of different ways how to represent the objects according to the differences in human perception. VR

allows immersion: the user can navigate inside the data and interact with the objects in the world.

One of the steps in the construction of a VR space for data representation is the transformation of

the original set of attributes describing the objects under study, in the present case grid related events

characterized by several monitored features, into another space of small dimension (typically 2-3)

with intuitive metric (e.g. Euclidean). The operation usually involves a non-linear transformation;

implying some information loss. There are basically three kinds of spaces sought: i) spaces preserv-

ing the structure of the objects as determined by the original set of attributes, ii) spaces preserving the

distribution of an existing class defined over the set of objects and iii) spaces representing a trade-off

between the previous two. Since in many cases the set of descriptor attributes does not necessarily

relate well with the decision attribute, different types of spaces are usually conflicting. Moreover,
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they may be created by different non-linear transformations.

A visual, data mining technique based on virtual reality oriented to general relational structures

(information systems) was introduced by J. J. Valdés [Val02b, Val03]. It is oriented to the under-

standing of large heterogeneous, incomplete and imprecise data, as well as symbolic knowledge.

Such a structure U =< O,A > is given by a finite collection of objects O, described in terms of

a finite collection of properties A (maybe large). These are described by the so called source sets,

constructed according to the nature of the information to represent. Source sets also account for im-

precise/incomplete information.

A virtual reality space V R is given by a finite collection of objects Ô with associated i) geome-

tries representing the different objects and relations, ii) behaviors which the objects may exhibit in

the world, iii) location in the VR space which typically is a subset <m of a low cardinality cartesian

product of the reals Rm (<m ⊂ Rm of dimension m ∈ {1, 2, 3} and Euclidean metric) and iv) func-

tions assigning geometries, behavior and location to the set of studied objects.

If the objects in U are in a heterogeneous space described by n properties, ϕ : Ĥn → <m is the

function mapping the objects O from U to those Ô ∈ V R (i.e. ô = ϕ(o), where o ∈ O and ô ∈ Ô).

Several desiderata can be considered for building a transformed space either for constructing visual

representations or as new generated features for pattern recognition purposes. According to the the

property that the objects in the VR space must satisfy, the mapping can be:

• Unsupervised: The location of the objects in the space should preserve some structural property

of the data, dependent only on the set of descriptor attributes. Any class information is ignored.

The space sought should have minimal distortion.

• Supervised: The goal is to produce a space where the objects are maximally discriminated w.r.t.

a class distribution. The preservation of any structural property of the data is ignored, and the

space can be distorted as much as required in order to maximize class discrimination.

• Mixed: A space compromising the two goals is sought. Some amount of distortion is allowed

in order to exhibit class differentiation and the object distribution should retain in a degree

the structural property defined by the descriptor attributes. Very often these two goals are

conflicting.

From the point of view of their mathematical nature, the mappings can be:

• Implicit: the images of the transformed objects are computed directly and the algorithm does

not provide a function representation.
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• Explicit: the function performing the mapping is found by the procedure and the images of the

objects are obtained by applying the function. Two sub-types are:

– analytical functions: for example, as an algebraic representation.

– general function approximators: for example, as neural networks, fuzzy systems, or oth-

ers.

Explicit mappings can be constructed in the form of analytical functions (e.g. via genetic pro-

gramming), or using general function approximators like neural networks or fuzzy systems. An

explicit transform ϕ is useful for both practical and theoretical reasons. On the one hand, in dynamic

data sets (e.g. systems being monitored or incremental data bases) an explicit transform ϕ will speed

up the update of the VR information space. On the other hand, it can give semantics to the attributes

of the VR space, thus acting as a general dimensionality reducer.

4.1.2.1 The unsupervised perspective: Structure preservation

Data structure is one of the most important elements to consider and this is the case when the

location and adjacency relationships between the objects O in U should give an indication of the

similarity relationships [CP81], [Bor87] between the objects in Ĥn, as given by the set of original at-

tributes A [Val02a]. ϕ can be constructed to maximize some metric/non-metric structure preservation

criteria as has been done for decades in multidimensional scaling [Kru64], [Bor87], or to minimize

some error measure of information loss [Sam69]. If δij is a dissimilarity measure between any two

objects i, j ∈ O coded by natural numbers (i, j ∈ [1, N ], where N is the number of objects), and

ζivjv is another dissimilarity measure defined on objects iv, jv ∈ Ô from V R (iv = ϕ(i), jv = ϕ(j),

examples of error measures frequently used are:

S stress =

√∑
i<j (δ

2
ij − ζ2ij)2∑

i<j δ
4
ij

, (4.1)

Sammon error =
1∑

i<j δij

∑
i<j

(δij − ζij)2

δij
(4.2)

Quadratic Loss =
∑
i<j

(δij − ζij)2 (4.3)

Classical deterministic algorithms have been used for directly optimizing these measures, like

Steepest descent, Conjugate gradient, Fletcher-Reeves, Powell, Levenberg-Marquardt, and others.

Computational intelligence (CI) techniques like neural networks [JM92], evolution strategies, genetic

algorithms, particle swarm optimization and hybrid deterministic-CI methods have been used as well

[Val04, VB05].

Jesús Montes Sánchez GLOBAL BEHAVIOR MODELING: A NEW APPROACH TO GRID AUTONOMIC MANAGEMENT



54 CHAPTER 4. STATISTICAL AND KNOWLEDGE DISCOVERY TECHNIQUES

Figure 4.1: Example of tree-dimensional representation using unsupervised VR spaces

The number of different similarity, dissimilarity and distance functions definable for the different

kinds of source sets is immense. Moreover, similarities and distances can be transformed into dissim-

ilarities according to a wide variety of schemes, thus providing a rich framework.

4.2 Unsupervised classification: clustering

Cluster analysis [Try39] tries to divide a dataset, creating groups of individuals with certain simi-

larities among them. Therefore the degree of association or similarity between two individuals would

be high if they belong to the same group (cluster) and low otherwise. Clustering can be used in many

different problems, from creating association of related products in a department store to identifying

new neuron types while studying the mysteries of the human brain. In this sense, there are many

scientific research areas where clustering can help to organize large datasets of individuals, such as

stars, animal species or patient typologies.

Clustering techniques can be separated in divisive and agglomerative methods. Divisive methods,

on the one hand, follow an iterative sequence, at the beginning of which all elements belong to the

same cluster. The clustering method proceeds then dividing this initial cluster in smaller ones, until

the final solution is achieved. Agglomerative techniques, on the other hand, begin creating one inde-

GLOBAL BEHAVIOR MODELING: A NEW APPROACH TO GRID AUTONOMIC MANAGEMENT Jesús Montes Sánchez



4.2. UNSUPERVISED CLASSIFICATION: CLUSTERING 55

pendent cluster for each element, and gradually merging them. In both approaches, the suitable final

number of cluster is selected using expert knowledge, in some cases automatically inferred by the

clustering technique, in others provided as input by the user. Techniques such as Hierarchical Clus-

tering, K-Means, Expectation-Maximization, Quality Threshold and DBSCAN can be distinguished

among the most common clustering methods.

4.2.1 Hierarchical Clustering

Hierarchical Clustering is an agglomerative clustering technique. The algorithm starts joining

the closest objects depending on some measure of distance and repeating the operation successively

obtaining larger clusters. Furthermore, all objects are joined together in the last step. This creates a

hierarchy of clusters, representing them as a tree, called dendogram (see Figure 4.2), with individual

elements at one end and a single cluster containing every element at the other. Each level of the tree

provides a different set of clusters, based on the maximum distance between points. The distance

measure is the key factor in this method. The distance between two elements indicates the similarity

between both and thus it is the factor for grouping elements. Several kinds of distance can be used,

like the Euclidean distance and the Ward’s method [War63]. The Euclidean distance is the geomet-

ric distance between two points in any space, whereas the Ward’s method uses a variance analysis,

minimizing the sum of squares between two clusters at each step. In order to select the final number

of clusters is required to inspect the dendogram. This must made by an expert in the analyzed field

who interprets the created groups. The reliance on this method depends on the expert and it must be

cautiously used [AB84].

a b c d e
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f

Figure 4.2: An example of dendogram [den]
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4.2.2 K-Means

K-Means clustering [Mac67] aims at partitioning n observations into k clusters in which each

observation belongs to the cluster with the nearest mean. The number k of clusters must be supplied

by the user. Instead of constructing a dendogram, data is initially randomly assigned to the differ-

ent clusters and them moved among them, reducing the dissimilarities and maximizing variability

between clusters. As before mentioned, cluster variability is measured with respect to the means of

the classifying variables. The algorithm uses an iterative refinement technique. Its basic phases are

described bellow, and also shown as an example in Figure 4.3.

K-means steps:

• Step 1: k initial "means" are randomly selected from the data set. This is the initialization step

(Figure 4.3(a)).

• Step 2: k clusters are created by associating every observation with the nearest mean. This is

also called the assignment step (Figure 4.3(b)).

• Step 3: The centroid of each cluster is calculated, and it becomes the new mean. This is also

called the update step (Figure 4.3(c)).

• Steps 2 and 3 are repeated until convergence has been reached (Figure 4.3(d)).

(a) Step 1 (b) Step 2 (c) Step 3 (d) Final result

Figure 4.3: K-Means example (k = 3) [kme]

4.2.3 Expectation-Maximization (EM)

The expectation-maximization (EM) algorithm [DLR77] is used for finding maximum likelihood.

It estimates parameters in probabilistic models, where the model depends on unobserved latent vari-

ables. Used as a clustering technique, EM attempts to identify clusters by finding groups of indi-

viduals whose distances follow a given probability distribution (normally a Gauss distribution, but
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not necessarily). EM is an iterative method which alternates between performing an expectation (E)

phase and a maximization (M) phase. During the E phase the algorithm computes an expectation

of the log likelihood with respect to the current estimate of the distribution for the latent variables.

In the M phase the parameters which maximize the expected log likelihood found on the E step are

computed. These parameters are then used to determine the distribution of the latent variables in the

next E step. This algorithm presents some basic similarities with K-Means, but instead of calculating

mean centroids EM estimates probability distribution parameters. Also, instead of defining cluster

membership by distance (as K-Means does), it calculates it using likelihood of belonging to a given

probability distribution.

4.2.4 Quality Threshold (QT)

Quality Threshold (QT) [HKY99] clustering is an algorithm that groups individuals into high

quality clusters. It is based on distance between individuals and a specific definition of clustering

quality. Quality is ensured by finding large cluster whose diameter does not exceed a given user-

defined diameter threshold. This method prevents dissimilar individuals from being forced under the

same cluster and ensures that only good quality clusters will be formed. It was originally designed

for gene clustering.

The QT algorithm follows these steps:

• The user chooses a maximum diameter for clusters.

• The algorithm builds a candidate cluster for each point by including the closest point, the next

closest, and so on, until the diameter of the cluster surpasses the threshold.

• Then it saves the candidate cluster with the most points as the first true cluster, and remove all

points in the cluster from further consideration.

• The algorithm then recurses with the reduced set of points.

The distance between a point and a group of points is computed using complete linkage, i.e. as

the maximum distance from the point to any member of the group.

4.2.5 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [EKJX96] is a density

based clustering algorithm. Density based clustering is based on the idea that the Euclidean space can

be divided into sets of connected components. The implementation of this idea for partitioning of a

finite set of points requires concepts of density, connectivity and boundary. They are closely related
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to a point’s nearest neighbors. A cluster, defined as a connected dense component, grows in any di-

rection that density leads. Therefore, density-based algorithms are capable of discovering clusters of

arbitrary shapes. Also this provides a natural protection against outliers.

DBSCAN requires two parameters: the distance ε and the minimum number of points required

to form a cluster (minPts). It starts with an arbitrary starting point that has not been visited. This

point’s ε-neighborhood is retrieved, and if it contains sufficiently many points, a cluster is started.

Otherwise, the point is labeled as noise. Note that this point might later be found in a sufficiently

sized ε-environment of a different point and hence be made part of a cluster.

If a point is found to be part of a cluster, its ε-neighborhood is also part of that cluster. Hence,

all points that are found within the ε-neighborhood are added, as is their own ε-neighborhood. This

process continues until the cluster is completely found. Then, a new unvisited point is retrieved and

processed, leading to the discovery of a further cluster or noise.
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(a) An example of two-dimensional dataset.
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(b) Dataset clustered using DBSCAN. Clusters distin-
guished by dot shape and color. Black dots are noise.

Figure 4.4: An example of density based clustering

4.2.6 Other clustering techniques

Other sophisticated clustering methods that can be used for data partition are Self-Organizing

Map (SOM) [Koh90], GRIDCLUST [Eri93], or SINICC (Simulation of Near-optima for Internal

Clustering Criteria) [BH90]. These techniques are not dicussed here because they are out fo the scope

of this thesis.
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4.3 Supervised classification

Statistical classification (normally referred simply as classification in the data mining field) is a

supervised machine learning procedure in which individual items from a dataset are separated into

different groups. This classification is based on quantitative information on one or more characteris-

tics inherent in the individuals (normally referred to as traits, variables, characters, etc) and, which

is more important and differentiated this approach from clustering, it is based on a training set of

previously labeled items. The basic idea behind supervised classification is to mathematically extract

a pattern for a set of previously classified individuals, enabling to automatically determine the class

of a new one using that knowledge.

Classification algorithms performance always depends greatly on the characteristics of the data

to be classified, and there is no single classifier that produces optimal results for any given problem

(a phenomenon that may be explained by the No-free-lunch theorem [Wol96] 1). Various empirical

tests have been performed to compare classifier performance and to find the characteristics of data

that determine classifier performance. However determining the most suitable classifier for a given

problem still requires a thorough data analysis and a high level of expertise in the field.

The measures precision and recall [OD08] are popular metrics used to evaluate the quality of

a classification system. More recently, receiver operating characteristic (ROC) curves [GS66] have

been used to evaluate the trade-off between true and false-positive rates of classification algorithms.

4.3.1 Logistic regression

In statistics, logistic regression [HL00] (sometimes called the logistic model or logic model) is

used for prediction of the probability of occurrence of an event by fitting data to a logistic curve. It

is a generalized linear model used for binomial regression. Like many forms of regression analysis,

it makes use of several predictor variables that may be either numerical or categorical. The aim of a

regression analysis [Lin87] is to know the statistical relation existing between a dependent variable

and one or more independent variables. In this sense, a functional relation between the variables must

be postulated. In this case, data are fit to a logistic curve. Logistic regression is used extensively in

the medical and social sciences as well as marketing applications such as prediction of a customer’s

propensity to purchase a product or cease a subscription.

1The Wolpert and Macready no free lunch theorem states that “any two learning algorithms are equivalent when their
performance is averaged across all possible problems”.
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4.3.2 Decision trees

A decision tree (or tree diagram) is a decision support tool that uses a tree-like graph or model

of decisions and their possible consequences, including chance event outcomes, resource costs, and

utility. Decision trees are commonly used in operations research, specifically in decision analysis, to

help identify a strategy most likely to reach a goal. In data mining and machine learning, a decision

tree can be used as a predictive model, usually called classification trees or regression trees. These

models map observations about an item to conclusions about the item’s target value. In these tree

structures, leaves represent classifications and branches represent conjunctions of features that lead

to those classifications. In data mining, a decision tree describes data but not decisions; the resulting

classification tree is used as a model for decision making.

P1

P3P2

P2Class 1 Class 2

Class 3 Class 4

Class 5

>= v1 < v1

>=v2   < v2 >=v3   < v3

>=v4   < v4

Figure 4.5: An example of classification tree

One of the most commonly used decision tree learning algorithms is C4.5 [Qui93]. This is a

statistical classifier of the ID3 family of algorithms [Qui86] that can generate a model in the form

of a classification tree or a set of equivalent classification rules. The leaf nodes of the decision tree

contain the class name, whereas any non-leaf node is a decision node. The decision nodes represents

attribute tests, with each branch (to another decision tree) being a possible value of the attribute. The

C4.5 algorithm extends ID3 providing mechanisms to deal with continuous and missing values.

4.3.3 K-Nearest Neighbors

The K-Nearest Neighbors algorithm (KNN) [Das91] is a classifier algorithm based on agreement.

KNN is a type of instance-based learning, or lazy learning where the function is only approximated

locally and all computation is deferred until classification. The KNN algorithm is amongst the sim-

GLOBAL BEHAVIOR MODELING: A NEW APPROACH TO GRID AUTONOMIC MANAGEMENT Jesús Montes Sánchez



4.3. SUPERVISED CLASSIFICATION 61

plest of all machine learning algorithms: an object is classified by a majority vote of its neighbors,

with the object being assigned to the class most common amongst its k nearest neighbors (k musty

be a positive integer, typically small). If k = 1, then the object is simply assigned to the class of its

nearest neighbor.

A basic example of KNN can be seen in Figure 4.6. The test sample (green circle) should be

classified either to the first class of blue squares or to the second class of red triangles. If k = 3 it is

classified to the second class because there are 2 triangles and only 1 square inside the inner circle. If

k = 5 it is classified to first class (3 squares vs. 2 triangles inside the outer circle) [knn].

?

Figure 4.6: An example of KNN classification [knn]

4.3.4 Naïve Bayes classifier

Naïve Bayes [LIT92, Zha04] is based on applying Bayes’ theorem. This classifier is a model

of conditional independence of predictor attributes, ensuring an optimal classification if explicit as-

sumptions are met. A naive Bayes classifier assumes that the presence (or absence) of a particular

feature of a class is unrelated to the presence (or absence) of any other feature.

Depending on the precise nature of the probability model, naive Bayes classifiers can be trained

very efficiently in a supervised learning setting. In many practical applications, parameter estimation

for naive Bayes models uses the method of maximum likelihood.

An advantage of the naive Bayes classifier is that it requires a small amount of training data to

estimate the parameters (means and variances of the variables) necessary for classification. Because

independent variables are assumed, only the variances of the variables for each class need to be
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determined and not the entire covariance matrix.

4.3.5 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) [Hay94] is an artificial neural network model that selects the

corresponding output for the specific input data. The MLP extends the standard linear perceptron us-

ing several more layers of neurons (nodes) with nonlinear activation functions, and is more powerful

than the perceptron in that it can distinguish data that is not linearly separable.

...

...

... Input
Layer

Hidden
Layer

Output
Layer

Figure 4.7: Generic MLP model

Multilayer perceptron networks using a back-propagation algorithm are one of the most com-

monly used techniques in supervised-learning pattern recognition and the subject of ongoing research

in computational neuroscience and parallel distributed processing. They are useful in research be-

cause of their ability to stochastically solve problems. This often enables to get approximate solutions

for extremely complex problems.

MLPs are commonly used in speech recognition, image recognition, and machine translation

software. Above all, their most important application has been in the field of artificial intelligence,

although the multilayer perceptron does not have connections with biological neural networks as

initial neural based networks have.

4.3.6 Support Vector Machines

Support vector machines (SVMs) are a set of related supervised learning methods used for clas-

sification and regression. Given a set of training individuals, each marked as belonging to one of two
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categories, an SVM training algorithm builds a model that predicts whether a new example falls into

one category or the other. Intuitively an SVM model can be seen as a representation of the individuals

as points in space, mapped so that the individuals of the separate categories are divided by a clear gap

that is as wide as possible. New individuals are then mapped into that same space and predicted to

belong to a category based on which side of the gap they fall on. A basic example of how SVMs work

can be seen in Figure 4.8. H3 (green) doesn’t separate the 2 classes. H1 (blue) does, with a small

margin and H2 (red) with the maximum margin [svm].

X2

X1

H1

H2

H3

Figure 4.8: A basic example of SVM [svm]

A support vector machine constructs a hyperplane or set of hyperplanes in a high or infinite

dimensional space, which can be used for classification, regression or other tasks. Intuitively, a good

separation is achieved by the hyperplane that has the largest distance to the nearest training data

points of any class (so-called functional margin), since in general the larger the margin the lower the

generalization error of the classifier.
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Chapter 5

Autonomic management of grid
systems

Large scale distributed systems have paved the way to face complex, technical and scientific chal-

lenges. Most of these new challenges can not be solved with traditional systems, due to their enor-

mous computing and/or storage requirements. Initiatives such as BOINC [BOI], PlanetLab [pla] or

TeraGrid [TeG] and, more generally speaking, grid [Fos02] or the recent cloud computing [Clo] pro-

vide computing and storage resources that can be scaled to a level difficult to imagine elsewhere.

Nevertheless, in spite of their potential, the complexity of these systems turns their management into

an extremely difficult task.

Autonomic computing could be a theoretical solution to this problem, providing the system

with the necessary mechanisms to manage itself, and leaving only high level decisions to the sys-

tem administrator. Incorporating autonomic management to these systems usually requires a deep

knowledge about the behavior of each single component. However, the large number of different

resources involved makes it almost impossible to analyze and implement efficient policies on ev-

ery one. Most of traditional and current grid management techniques are based on this approach

[BAG00, KBM02, SF05, Sán08], dealing with each independent resource’s behavior separately. A

good alternative could be simplifying the understanding of the whole system, studying it as a single

entity instead of the set of elements that together form it. This abstraction would describe how the

system globally works and simplify its management.
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This approach combines the use of self-adaptive techniques with a single entity vision of the grid

in order to provide autonomic management and increase dependability. As it has been said, related

research has focused on resource-related management, while this work’s approach is unique in that it

uses this single entity vision to focus on service-related global aspects. This approach involves a new

starting point for grid management, considering aspects related to the whole system behavior instead

of each independent resource.

5.1 Autonomic management issues in grid computing

Over the last decade, as global networking becomes reality, several different incarnations and

definitions of what could be called grid systems have appeared [Sto07], from he BOINC infrastructure

and the Condor resource pool [Con] to modern grids. Despite their differences, the following four

main characteristics can be observed in most of them:

1. Distributed: A grid is composed of a set of resources that are logically and physically dis-

tributed over a wide-area communications network (WAN). The network is, in consequence,

another resource of the system.

2. Non-dedicated: In most cases, the resources that compose the grid are simultaneously being

used by external entities. The kind of use obviously depends on each element, but typical cases

are general purpose networks (such as the Internet or corporative nets) and desktop computers

or data center clusters that are also being independently used by their owners.

3. Heterogeneous: Also in most large scale distributed systems the computing resources involved

are clearly different between them. Typical examples of this diversity are different architec-

tures, operating systems or network protocols.

4. Non-centralized: Even though most large scale distributed systems have global infrastructures

that allow all their different elements to cooperate (such as the Globus [GlA] and GLite [Gli]

middlewares in grid computing), most resources actually belong to different owners that keep a

high degree of control over their properties. For instance, in the Seti@home project [SAH] the

system has no means of controlling when computing resources will be available, and nothing

avoids that a specific user turns off his computer in the middle of a job execution. The degree

of administrative decentralization depends on the type of system (e.g. it is not the same for the

EGEE [ege] and Grid5000 [JLL+06] platforms), but nevertheless it is an important aspect that

is always present to some extent.

GLOBAL BEHAVIOR MODELING: A NEW APPROACH TO GRID AUTONOMIC MANAGEMENT Jesús Montes Sánchez



5.1. AUTONOMIC MANAGEMENT ISSUES IN GRID COMPUTING 69

Most grids are, in consequence, not only distributed in nature, but also heterogeneous, non-

centralized and in most cases composed of non-dedicated resources. Incorporating autonomic fea-

tures to such complex environments is not a simple task. These properties, added to the fact that grids

are large scale systems (and therefore they have a large number of resources), bring the problem to a

new level, and it does not seem a matter of simply adapting existing distributed computing techniques.

The inherent complexity of grid systems makes the direct application of traditional management

techniques very difficult. In grid, heterogeneity, variability and decentralization are considered, in

most cases, as system features. These special characteristics require a different perspective in sys-

tem management, and traditional behavior patterns can not be directly adapted. When adopting an

autonomic computing approach, the grid complexity has direct impact in its four main areas: self-

configuration, self-healing, self-optimization and self-protection.

5.1.1 Self-Configuration issues

The heterogeneity and variability of most grids make resource configuration a non-trivial prob-

lem. Most traditional distributed approaches (cluster computing, centralized client-server architec-

tures, etc) very often present desirable characteristics such as stability, homogeneity or simple and

clear behavior patterns. This makes system configuration almost exclusively a design problem. Ex-

amples of this scenario are most of modern high performance computing clusters, where there are

dedicate nodes for computing, data storage and so on, in a fixed setup. In these systems, reconfig-

uration only occurs when service requirements change or upgrades and structure modifications take

place (all of which are rare, localized events). The reconfiguration process is usually performed in an

off-line or semi-off-line operation mode and it frequently requires certain degree of redesign of the

system’s structure.

In grids the situation is clearly different. Resources are not only heterogeneous in nature (some-

thing that already increases the complexity of the configuration process) but also decentralized and

unpredictable, joining and leaving the system at a high rate, and sometimes with variable availability

and reliability. Under these conditions it seems clear that, in most cases, a fixed setup would not be

completely effective. These large scale systems require a flexible and adaptable configuration in or-

der to correctly take advantage of the available resources. Finally, the complexity of creating a highly

adaptable configuration strategy increases even more if we also consider the high rate of resource

variability.
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5.1.2 Self-Healing issues

As a consequence of the grid natural characteristics, resources can unpredictably appear and dis-

appear, network links can be temporarily or permanently interrupted, parts of the system can be

overloaded without any control from the global system administrators and so on. These events are

normally considered faults in traditional distributed systems, but in grid computing they are part of

the environment’s typical behavior. Therefore, is not so clear if these events should be regarded as

faults or not, even though they might have a direct impact on its dependability. The lesser degree of

cohesion of grids dilutes the concept of failure based on the loss or degradation of resources. Grids

are commonly seen as an immense set of resources that provide a series of services. Therefore their

proper operation should be understood in terms of quality of the services provided instead of the state

of its internal resources.

5.1.3 Self-Optimization issues

Understanding the system behavior is the basis for improving its performance. From an abstract

perspective, optimizing the provided services implies modeling the system’s function and identify-

ing situations that limit performance (such as bottlenecks). A deep system’s behavior understanding

enables also to develop even more advanced management policies and strategies, designed to make

the most of the system resources available. In traditional distributed computing the usually stable,

dedicated and highly fault-tolerant systems nowadays available (such as most modern computational

and storage clusters) facilitate this task, allowing to design adaptable and scalable optimization tech-

niques. These optimization techniques usually rely on homogeneous, dependable, high-performance

resources (computing nodes, storage and network).

In grid computing, however, the situation is radically different. The massive amount of heteroge-

neous, non-dedicated and unpredictable resources that interact during the system’s operation create a

completely new and different framework, forcing performance optimization techniques to be adapted

to these new conditions. The main difficulty of grid performance optimization is no other than un-

derstanding the system’s behavior itself. Behavior pattern extraction and bottleneck identification

are very complicated tasks, as synergies, dependencies and possible deadlocks between resources are

obscured by the sheer complexity of the large-scale distributed system itself.

5.1.4 Self-Protection issues

Given the distributed, heterogeneous and decentralized nature of grids, proactive identification

and protection from external attacks is a crucial aspect. In this sense, protecting each independent

resource (computing machine, network element, etc) is the necessary first step. This can be done
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incorporating traditional, well tested techniques to defend it from malicious usage and other security

threats. However, the massive resource interaction present in grid systems can render these techniques

insufficient, creating the need for protection mechanisms focused also on global aspects of the system.

Again the grid’s extreme complexity makes this task difficult, requiring to study the system as a whole

and a deep analysis of the resources internal and external interactions.

5.2 Single entity vs. multiple entities

One of the most puzzling aspects of grid systems is that they are considered as single elements

in theory but, when it comes to practice (specially in management related issues), they are treated as

a set of independent, loosely related, elements. It might be argued that these systems are no simple

ones and their great complexity makes necessary to look after every one of its parts. However, it could

simply be a matter of perspective.

To illustrate this idea, it is interesting first to analyze the case of a single desktop computer. This

apparently much simpler system is commonly regarded and managed as a single device but, in fact, it

is composed of a large set of sophisticated elements that cooperate. Elements like CPUs, memory and

its controllers, video cards, hard drives, network interfaces and so on have distinctive functionalities

and are technologically complex, but are seen as parts of a single entity, instead of a set of heteroge-

neous resources. The secret behind this change of perspective is the use of high-level tools (basically

the operating system) that provide an abstraction layer between the real, heterogeneous and complex

hardware and the user. Several generic parameters are defined, such as CPU load or network usage, in

order to express the system state in a standard manner. Even though this abstraction carries some loss

of information, it enables the managing techniques to be standardized, regarding all desktop comput-

ers by the same parameters.

If this concept is applied to grids, it becomes clear that the proper tools for making this abstraction

are yet to be established. Grids are still considered as a set of parts, instead of the sum of them. In

consequence, the management tools inherit the complexity of the system.

5.3 Grid systems management: Resource-level vs. Service-
level

Distinguished by their point of view, autonomic management techniques in grid systems can be

split into two categories: Resource-level and Service-level. In order to optimize performance and
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increase system dependability the correct combination of these two types of techniques should be

applied. However, some important aspects must be considered.

Resource-level management involves the application of standard techniques in each and every

one of the resources in the system. This might seem pretty straightforward, but a detailed analysis

reveals that most of the typical characteristics of a grid limit its efficiency. The heterogeneous and

non-dedicated nature of the system increase complexity, but it is the non-centralized aspect the one

that becomes the great difficulty. In many cases, the global management system has so limited con-

trol of each resource that there is only a small set of suitable solutions available, such as general

directives and coarse-grain strategies. To improve service dependability on a computational grid, for

example, each job can be simultaneously executed in several resources, hoping that at least one of

them finishes it (basic redundancy). Advanced resource-level management strategies (most of them

directly inherited from traditional distributed computing) can of course be implemented as well, such

as complicated optimization mechanisms, detailed security directives, etc. However, the high level

of resource control usually required in order to apply those techniques would make it extremely hard

to deploy them all over the grid in an unified way. The main reason for this is that, as it has been

said, the grid non-centralized nature prevents any administrator from having full control of the whole

system. Therefore advanced resource-level management will in most cases only be applied locally

(limited to corporative networks, specific VOs, etc).

Service-level management, on the other hand, deals with system-wide policies aiming to increase

performance, dependability and quality of the services provided. This is particularly important in

utility computing environments, where the quality-of-service (QoS) is the key factor. However, as

the management policies have to deal with the whole environment, it is important to find ways to

efficiently handle this complexity. It is also important to understand that, as the nature of the system

is different from resource-level management, the terms in which this management is expressed will

certainly differ.

In resource-level management basic concepts can be directly inherited from traditional distributed

systems. Performance, dependability, security and protection could be defined in those traditional

terms, therefore adopting a related traditional distributed systems management approach. This means

that, for instance, events such as a machine turning unexpectedly off or the temporary loss of a net-

work link would be clearly regarded as faults. Therefore the different fault tolerance techniques used

should be directly aimed to prevent these faults from causing failures. But in a non-dedicated, non-

centralized distributed environment like a grid, each partner that shares resources keeps full control

over its property (computing nodes, storage elements, network links, etc). Resource providers can
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change the state of its own resources, without consent from the grid global management. Some ma-

chines could be turned off, originating an event that would be probably considered a fault in traditional

distributed systems management. But in grid systems these events are by no means considered as un-

desirable or unexpected. They are more likely accepted situations that not only may, but will occur as

part of the natural evolution of the grid. Therefore service-level management can never regard them

as faults. Analogous situations can be observed in the areas of system protection and performance

optimization. Resource-level management techniques in those areas should be focused on individual

issues, making the most of the available resources and protecting each and everyone of them from

malicious attacks. However, resource-focused protection and optimization does not necessary means

grid global security and performance improvement. Service-level management should focus on these

global aspects, handling resource interaction and developing synergies.

Generally speaking, service-level management should focus on QoS issues and global behavior.

It can benefit from a general representation of the grid global state, specially if it is service oriented.

This would create a grid global behavior model based on the system’s service relevant states instead of

the multiple specifics of each resource. This representation would not only be ideal for service-level

management, but also would provide and abstraction layer like the one above mentioned. With such

kind of model, grid management tools could finally have a real single entity perspective, incorporating

the environment complexity without being overwhelmed by it. This could also take service-level

management a step further, better understanding and improving the systems behavior, performance

and dependability.

5.4 Contribution

In spite of all the service-level autonomic management issues here described, there has not been

yet a scientific advance aimed at providing a genereric frame of reference for grid total state behavior

modeling. As it has been aready explained, and will be extensively discussed in the following chap-

ters, such a model could strongly benefit autonomic management, as well as become a significative

step towards grid single sistem image. It will also provide a complete representation of the grid state,

including internal, resource related aspects as well as external, service and user related ones. This

work’s contribution is to propose and develop that necessary frame of reference to model grid global

behavior, providing the required abstraction to regard and manage it as a sigle system.

The first step it to formalize the basic theoretical concepts on which the global behavior model

should be constructed. This means discussing what is considered to be service-level behavior, what

does the global grid state represents and how it can benefit autonomic management. Chapter 6 ad-
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dresses these issues, further extending the autonomic computing discussion and formalizing the basic

behavior modeling concepts, from a grid service-level perspective.

Once the theoretical aspects are well stablished, the nest step is to formaly define a practical

methodology to create a service-level model of the grid behavior. Chapter 7 presents a methodology

focused on this, detailing a new set of procedures designed to observe and analyze the grid global

behavior, constructing, as a result, an abstract model capable of explain the system’s evolution as a

single entity. This chapter elaborates even more on the subject, providing also a detailed study of the

proposed methodology properties and presenting experimental results to validate the approach.

The next step is to empirically illustrate how grid autonomic management can take advantage of

service-level behavior modeling. In Chapter 8 the full process is described, showing how global be-

havior analysis provides the necessary knowledge to desing and incorporate service-level autonomic

management features into a real grid infraestructure. The process is explained in detail through a real

scenario, based on a high performance distributed data access service. Finally, the same Chapter 8

presents also a generic framework for service-level grid autonomic management, developed as part of

this works and based on the global behavior modeling methodology previously described.

Finally, Chapter 9 explores an advanced extension to the service-level global grid model presented

in Chapter 7, incorporating behavior prediction capabilities.
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A service-level grid management
model

As it has been previously said, service-level management could strongly benefit from a single entity

point of view. To achieve this, it is first necessary to formally define the grid behavior theoretical

model to be used in this case. In this chapter a service-level grid management model is presented,

inspired by the single entity perspective. This model is based on the basic concepts and taxonomy of

dependable systems presented by A. Avizienis, et al. in [ALRL04].

Following the single entity point of view, the grid can be considered as a unique system. From

a theoretical perspective a grid, being a system, presents a structure and a function (or functions).

The structure is the set of components that bound together to form the system, in this case the grid

resources (computing and storage servers, network nodes, etc). The function or functions are nothing

less than what the grid is intended for, and should be described in its functional specification. The

part of the function that is related to the interaction with external entities (such as clients) can be seen

as the functionality provided by the grid. This functionality is presented by the service or set of ser-

vices. The interaction between the external clients and the grid is made through the service interface.

The analysis of the behavior presented by the grid internal structure (its resources) provides the

internal state of the system. It could describe events happening in specific machines or network

links, but gives little information about how this affects the grid global function. On the other hand,

the behavior observed through the services interface (what the clients see) can be analyzed to deter-
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mine the system’s external state. This can provide information about how the system’s function is

being provided, but naturally lacks the capabilities to give a more detailed insight on the grid struc-

ture situation. The combination of both internal and external state produces the grid total state, that

describes the system’s behavior in a more complete way.

Grid

FuctionStructure

BehaviorResources Service Service 
Interface

Total State

Internal 
State

External 
State

Clients

Figure 6.1: The grid: structure, function and state

Resource-level management focuses on aspects related to the grid structure (resources) and, there-

fore, affects only the internal behavior and state. In order to achieve service-level capabilities the

whole total state must be considered, incorporating also the external state and its service related in-

formation.

6.1 Service-level autonomic management

Taking the previous model as a basis, we can analyze now how the different autonomic computing

areas can benefit from a total state, service-level approach.

Self-configuration focuses on resource deployment and machine specific configuration. It deals

with issues such as what software should be installed and where, in order to achieve the grid service
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expectations. It is, therefore, intensively related to the system structure and internal state. In this

case a resource-level approach is clearly indicated, since it contains all the resource-related relevant

information needed.

Self-protection focuses on resource weak points as well as global security threats. A service-level

approach would strongly benefit the protection against external, global attacks, specially those aiming

at complex resource interaction vulnerabilities. Nevertheless, it would lack the necessary information

to protect the system against more localized attacks, specially those aimed at single resources. An

hybrid approach, combining elements of both resource-level and service-level management should be

advisable in this case.

As explained in Chapter 5, self-healing is probably the autonomic computing area most affected

by the grid systems special characteristics. Grid services fault tolerance issues are directly related

to the system global state and require a service-level management approach in order to be handled

properly. The grid unique features require basic fault tolerance concepts to be redefined, eliminating

the possibility of directly inherit them from traditional distributed systems. This is explained in more

detail below.

Finally, self-optimizing is focused on performance and quality of service issues. These can be

equally related to the system internal or external state. The grid performance is directly dependent on

the system resources, but also on the service usage patterns. Additionally, the grid complexity once

again becomes an issue, extremely complicating any attempt of self-optimizing autonomic manage-

ment from a resource-level point of view. Service-level management seems to be the ideal approach

here, as it handles grid complexity without being overwhelmed bi it, focusing at the same time in the

system’s total state.

As it can be seen, both self-healing and self-optimizing would strongly benefit from a service-

level, single entity approach. Therefore, this work was specifically focused on them, trying to pro-

vided the optimal basis to develop efficient autonomic management mechanisms in these two ar-

eas. Nevertheless, some specific basic theoretical aspects have to be discussed before continuing.

Self-configuration and self-protection areas require the incorporation of resource-level elements and,

therefore, are out fo the scope of this Ph.D. thesis.

6.1.1 Self-healing: Failures, errors and faults

It can be said that the grid delivers correct service when the behavior observed through the service

interface follows the original functional specification. The total state associated to correct service is
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called correct state. When the observed behavior deviates from the functional specification the sys-

tem moves to an incorrect state. The transition from a correct state to an incorrect state is called a

service failure, often abbreviated simply as a failure.

An error is the part of the total state of the system that may lead to a subsequent service failure.

An error is not an incorrect state itself, but may possibly lead to an incorrect one and therefore is a

potentially dangerous situation. The event that causes an error in the system’s total state is called a

fault.

S1

S4

S3 S5

S6

S2

Error

Fault

Failure

Incorrect service

Figure 6.2: An example of a system’s total state model

Figure 6.2 illustrates an example of the total state of a system, represented in the form of a finite

state machine [HMU00, CL89]. The system presents a total of 6 possible states (S1 to S6), with one

of them (S6) providing incorrect service. The possible set of events in the system is represented by

the state transitions displayed in the figure and, at it can be seen, two of them are considered failures,

because they make the system move to an incorrect service state. There are also two dangerous states

(S4 and S5) that, even though they are correct in terms of the service provided, might lead into the

incorrect service state (S6). For this reason these two states are considered errors, and the events that

make the system transit to them are faults.

The use of this fault model allows to model single entity grid failures and provides the basic tools

to build fault tolerance mechanisms. The use of the system’s total state ensures a global but compre-

hensive understanding of the grid’s behavior, not focusing only in resource-related aspects but also

incorporating service-relevant ones.
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6.1.2 Self-optimizing: performance and quality of service

Usual grid management mechanisms try to improve performance based on the individual analysis

of every component on the system. Then they try to adjust the configuration or predict the behavior

of each independent element. This approach may seem reasonable considering the complexity of the

grid. However it could possibly fail to achieve optimal performance, because in most cases it lacks

the capability to understand the effects that different elements have on each other when they work

together. From a more theoretical point of view, if a grid is considered as an individual entity (with

its computational power, storage capacity and so on), it seems logical to analyze it as such, instead of

composed of a huge set of individual resources.

System performance is usually determined by the amount of useful work accomplished compared

to the time and resources devoted to it. In order to optimize this ratio, the system must manage the

available resources wisely. In large, heterogeneous and dynamic system such as grids, resource inter-

action becomes a critical issue, and effectively managing each component separately does not guar-

antee and improved overall performance. As in other less complex distributed and non-distributed

scenarios (clusters, regular computers...), a global, service-level perspective is required in order to

identify system bottleneck and other performance issues.

Quality of service means not only to achieve higher performance, but to sustain and guarantee a

certain level (or levels) of it. This introduces the ideas of maintaining a specific, constant performance

through time and providing the system with the necessary tools to ensure it. As this is directly related

to performance, the previous reasoning applies directly also in this case, making clear the need for a

service-level, single entity approach. Additionally, guaranteeing system performance (and therefore

providing quality of service) creates the need for self-adapting techniques, in a very similar way to

the self-healing area.

6.2 Modeling the total state of the grid

As it can be seen, the key to provide service-level management in grids and other kinds of large

scale distributed systems is to have a deep knowledge about the system’s total state. Many differ-

ent techniques and representations can be used to this purpose, but there is always a set of basic

characteristics that any grid total state model should present:

• Specific state definition: State characteristics and transition conditions should be unambigu-

ously specified. The number of states should also be finite, in order to provide a useful model. A

typical model representation that fits with this characteristics is a finite state machine [Arb69].
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• Stability: The resulting model must be considerably consistent with the environment behavior

over time. As these environments are naturally changing, it seems unrealistic to hope for sta-

tionarity and to try to find a definitive model for them. However, for a model to be useful, it

must present at least a certain degree of stability. A model that needs to be regenerated every

time an event occurs in the system is simply unusable.

• Simplicity: The resulting model should be easily understandable and provide basic and mean-

ingful information about the systems behavior. A very complex model might be very precise,

but it would be extremely complicated to use.

• Relevance to service: The model states should be related to the system services. This ensures

that the observed behavior can be explained in terms of how these services are being provided.

This makes it possible to determine if the conditions are acceptable and if the service provided

meets expectations.

These characteristics define a descriptive model that provides a different outlook on system man-

agement, focusing on global aspects and events from a single entity perspective (instead of consider-

ing separately the multiple entities that compose it). A behavior model like this would be very useful

in complex distributed environments, specially in system management tasks such as improving qual-

ity of service, dependability and fault tolerance. In these kinds of scenarios the global state of the grid

is much more important than the state of every independent resource (given the usual amount of re-

dundancy and distribution), and therefore a model focused on a global perspective proves to be more

efficient, and much simpler. A technique or set of techniques capable of generating this model would

be the key to understand the grid’s total state and its global behavior. To this purpose an analysis

methodology has been developed. This methodology is introduced and described in Chapter 7.
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Chapter 7

A global behavior model for
understanding the grid

As it has been explained in detail in previous chapters, two different ways of of understanding the

grid can be distinguished. First of all, the multiple entity point of view, common in most grid manage-

ment techniques, where the system is controled analyzing each resource independently. On the other

hand, there is also the single entity point of view, in which the grid is regarded as a single system (the

grid). This is, as explained in Chapter 5, similar as how computers are regarded as individual entities,

even though they are made of several electronic components of different nature, or how clusters are

most times considered as single machines, when in fact they are composed by many computers. It

is, finally, a matter of abstraction, and a global behavior model of a grid would provide the necessary

abstraction layer that finally makes the single entity point of view possible.

A model capable of providing single entity point of view becomes the basis to develop service-

level autonomic management strategies. It is specially indicated in the areas of self-healing and self-

optimyzing (as prevously explained in chapter 6). In the following sections a methodology for creating

this kind of model is presented, called GloBeM (Global Behavior Modeling). This methodology is

strongly based on knowledge discovery techniques, and divided into the following three steps:

1. Observing the grid: The system is observed using large scale distributed systems monitoring

techniques. At this point, every resource is monitored and the information is gathered. In the

same way the operating system of a desktop computer monitors every hardware element, each
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resource must be observed as a start point to build the abstraction. After or even simultane-

ously with the monitoring, the information obtained is represented in a more global way. The

volume of montoring information generated could be enormous, due to the high number of

different resources present in a grid (from hundreds to millions). Therefore the use of statis-

tical tools (mean, standard deviation, statistical tests, etc) and data mining techniques (visual

representation, clustering, etc) is required, in order to provide a correct and useful information

representation.

2. Analyzing the data: Once the monitoring information is properly formatted, again data mining

techniques (machine learning) are applied in order to extract useful knowledge and state related

information about the system’s behavior.

3. Building the model: Finally, a behavior model is constructed (a finite state machine exended

with adittional statistical information), providing meaningful states and global, service-level

information.

The resulting model produced by GloBeM becomes the abstraction layer on top of the grid. This

model expresses in a simple and usable way the behavior of the system, and allows us to focus on a

single entity view of the environment.

Finally, the whole GloBeM process is made in a transparent way, that is, autonomically.The pro-

posed autonomic management helps to reduce the complexity and drawbacks of grid environments

by managing their heterogeneity and complexity.

7.1 Grid global behavior model construction

In the previous section the global behavior model has been introduced and generally described.

In order to have a deep understanding of the model capabilities it is necessary to know in detail how it

is built. The complete three phases of GloBeM process with all their inner steps are shown in Figure

7.1. The following subsections will describe in detail every stage.

7.1.1 Stage 1: Observing the grid

As in any other autonomic computing process, the first step is observing the environment, that

is, monitoring. A correct observation of the relevant parameters is crucial to witness the real grid

behavior and to identify its states. However, as the grid monitoring information is very often massive

(due to the actual size and heterogeneity of the system), it is also important to find a good way to

represent this data, in order to be properly analyzed.
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Grid

Observing the grid

Analyzing the data

Monitoring Representation
(VR spaces)

State identification
(DBSCAN clustering)

State description
(C4.5 classification)

Building the model

Statistical analysis

Finite State Machine

Figure 7.1: GloBeM phases

Therefore the observing the grid stage is divided in two steps: System monitoring, and informa-

tion representation.

7.1.1.1 System monitoring

This first step is basically to gather monitoring information from every grid resource. Many com-

monly used monitoring tools can be used or adapted to this purpose, such as GMonE [gmo, Sán08],

MonALISA [mal, NLB01, NLG+03], NWS [WSH99, Wol03, nws], Ganglia [gan], MDS [SDM+05],

etc. The objective is to obtain a set of general observations of diverse parameters that can be mon-

itored in each grid resource and then aggregate them to obtain grid scale values. This aggregation

can be as complicated as it is desired, but generally common statistic descriptors such as average

values and standard deviations are sufficient. The use of GMonE instead of other monitoring systems

is recomended, since it performs this aggregation automatically, so no extra software layer is required.

There is an important detail that has to be discussed at this point, and this is the parameter selec-

tion. Intuitively it may seem reasonable to think that field experts in the services the grid provides

could have a better understanding of the system behavior and therefore they could be able to make a
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good monitoring parameter selection, focusing only on relevant information and discarding the rest.

In the performed experiments this human expert factor proved to be very limited and generally inef-

ficient. This seems understandable considering the vast complexity of the environment, which makes

unlikely for any expert to have a complete knowledge of all possible influences on system behavior.

On the contrary, a fully automatic approach is proposed here, based on the mathematical analysis of

each variable in order to determine its importance. In this proposal, the parameter selection is done

by the process itself (as described in this and the following sections), and it emerges naturally as a

consequence on the methodology. Instead of providing a set of selected metrics, the administrator

just needs to input as many different parameters as possible.

7.1.1.2 Information representation

As important as the monitoring information itself is the way it is represented. A proper analysis

can not be performed if data is not correctly organized.

Although, as it has said above, the monitoring information should be aggregated in order to obtain

grid scale values, this is usually not enough. If the parameter selection was exhaustive the monitoring

data set obtained would still have so many variables, making difficult further analysis. To alleviate

this problem virtual representation of information systems is used [Val02b, Val03] (see Section 4.1.2

for details).

In GloBeM unsupervised VR spaces are used for representing the grid, as the states are unknown

in nature, moreover with a possible time dependent number and composition. This approach is more

convenient than other classical techniques like Principal Components Analysis (PCA) [Pea01] for

several reasons: i) PCA is a linear technique, whereas unsupervised VR spaces are obtained with

nonlinear methods, more adequate to describe the complex relationships existing in large masses of

monitored objects in an uncontrolled time-varying environment, ii) monitored processes are prone to

contain missing information (this difficulty can be dealt with using nonlinear VR spaces, but seriously

affects PCA), iii) unsupervised VR spaces focusses the attention in preserving the similarity relations

between every pair of monitored objects in the best possible way, whereas PCA only seeks a trans-

formation which creates a monotonically decreasing distribution of the variance (not necessarily the

property of interest when trying to identify states within an unknown system).

GloBeM takes advantage of unsupervised VR spaces in order to identify grid states. Figure 7.2

illustrates a typical tree-dimensional data set represented with this technique. As it can be seen, the

similar points appear closer, forming clouds1.

1Do not confuse these clouds with this term in cloud computing.
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Figure 7.2: Example of tree-dimensional representation

At the end of stage 1 GloBeM methodology has produced two outputs. The first one is the

aggregated monitoring data, which contains the actual observed information. The second one is

the three-dimensional virtual representation of that information, created to represent the degree of

similarity among observations in an easy to handle way.

7.1.2 Stage 2: Analyzing the data

The aim of this stage is to identify and describe grid states.The final objective of these procedures

is to create a finite state machine that models the system behavior, so the states themselves are the

main element to identify.

The generated visual representation carries information regarding the degree of similarity among

the observed monitoring values. Similar individuals in the data set should appear close in the represen-

tation, presumably forming a sort of clouds, separated by relatively empty spaces. As all individuals

in each cloud have similar monitoring values, it is reasonable to presume that they have a close rela-

tion among what can be represented as belonging to the same group. Therefore different clouds will
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represent different states, and it is necessary to analyze and characterize them.

This process is divided as well in two steps. The first one is actually separating the clouds in the

three-dimensional representation. The second one is to, once each cloud has been separated, to study

them in order to characterize each state.

7.1.2.1 State identification

In order to divide the original monitoring data set in different groups that will become states, the

clouds within the tree-dimensional representation have to be separated. This could be done manually,

by a visual analysis but, the aim of this proposal is to do it automatically. This is where data mining

techniques [HK00] are the key to provide the appropriate solution.

The state identification can be seen as a clustering problem. Basically clustering is the assignment

of objects into groups (clusters) so that objects of the same cluster are more similar to each other than

objects from different ones. There are many clustering techniques that can be used, depending on the

type of data and information about it available. During the development of this methodology several

different clustering algorithms were tested in order to find the most adequate (a detailed description

of all the algorithms here mentioned can be found in Section 4.2):

• K-Means [Mac67] and derived algorithms were the first to be tested, as they are one of the most

commonly used clustering techniques. The results were diverse, showing that the clustering

quality depended greatly on the data set used. Also, the K-Means algorithms require to provide

the number of clusters as an input, which in this case is the number of states, but this value is

unknown at this point. Anyway the performed experiments showed K-Means algorithm did not

clustered correctly many of the three-dimensional datasets generated in the previous phase, so

these techniques were discarded.

• Hierarchical clustering [Joh67, D’A78] was tested then, also with unsuccessful results. The

main drawback of this technique is that the tree-dimensional representation contains noise that

interferes with the hierarchical construction. This noise is a relatively small set of values that

are not really close to any cloud, but resting in the almost empty areas between them. At this

point it was clear that the clustering technique chosen should deal with this noise, therefore it

should be a density based approach.

• Expectation-Maximization (EM) [DLR77] techniques were tried then, also with uneven re-

sults. At this point nothing can be assumed about the grid states, so limiting the search to a

expected probability (as EM does) distribution seems premature.
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• Quality Threshold (QT) [HKY99] clustering was tested then, with better result in this case.

This algorithm allows us to identify very diverse kinds of clusters, without assuming any den-

sity probability distribution either specifying the number of clusters a priori. It requires more

computing power than K-Means and it was originally designed for gene clustering. Although

it provided better results than the other techniques, it still presented some problems dealing

with noise values. Most of these problems basically resulted in the algorithm not being able to

correctly separate clusters, grouping together sets of points clearly separated in the three dimen-

sional space, but possibly conected by small groups of noise points. The main reason behind

these problems could be that QT was originally designed to work in gene clustering. Generally

the type of data sets used in gene clustering are very different from GloBeM three-dimensional

representation, usually presenting many dimensions (much more than three) but not so many

points.

• Finally DBSCAN [EKJX96] family algorithms were tested. DBSCAN techniques are specifi-

cally designed to identify density variations in a data set, specially in those with a low number

of dimensions (which is the case) and they manage noise in a better way. It was finally decided

to use this technique as it proved to be the most efficient and stable one for GloBeM’s problem,

providing a reasonably good clustering in almost every test.

The result of the state identification step is the clustering produced by the DBSCAN algorithm.

The clustering information calculated is then incorporated to the monitoring information to perform

its analysis.

7.1.2.2 State characterization

As each point in the tree-dimensional visualization represents one individual on the original data

set, the clustering can be directly incorporated to the initial readings, and the resulting groups will be

still consistent. Once the clustering is finished and its results incorporated to the original data set it is

necessary to use a technique that explains the clusters in terms of the original variables.

This is a typical supervised classification problem. In this kind of problems the main objective is

to create a model that explains a given classification of the individuals of a data set. In this case the

classification is the clustering generated on the previous step, and the classification model generated

must fulfill two requirements:

1. The model must be understandable by human means. As the main objective of this method-

ology is to create a behavior model of the grid based on a FSM, it is important that the states

are defined in a way a human expert can understand. Therefore the model must be expressed
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as a decision tree, decision rules or some other kind of understandable representation. This is

important at the time of choosing the right classification algorithm because some techniques

(i.e. Artificial Neural Networks [Hay94]) can generate very precise classification models that

can not be explained.

2. The model must be simple. For the same reason as the previous point, the generated model

must be easy enough for a human expert to understand.

Different classification algorithms that fulfill the previously mentioned two requirements were

tested, and finally the C4.5 algorithm [Qui93] was selected. This is a statistical classifier that gener-

ates a decision tree as classification model. This tree can be easily translated into a set of rules, each

one describing the conditions to determine which class an individual belongs to. The basic nature of

the decision tree guarantees no ambiguity, allowing each element to be part of one group only. This

algorithm can also be automatically adjusted to make sure that the generated tree is not too complex

(although very simple models will probably generate worse classification models). In any case the

C4.5 algorithm parameters can be automatically adjusted to generate a model that is understandable

and useful.

At the end of this second stage the states have been identified and characterized. The next step is

to statistically analyze the monitored data including this new information, in order to obtain the FSM

model.

7.1.3 Stage 3: Building the model

The two previous stages provide a set of states and its description, but still more knowledge can

be obtained from the monitoring data originally gathered. Transition between states are difficult to

define automatically but, as it has been said before, the generated model is not ambiguous (it is rep-

resented in the form of a decision tree), so no situation where two states happen at the same time is

possible. Therefore the transition between states can be determined by the classification model itself,

reviewing the conditions of each one.

A simple statistical analysis of the monitored data, anyway, can provide with some other relevant

information:

• State probability: The statistical study of each state in the monitoring information data set can

offer a good estimation of the probability of each grid state. Therefore the most common states

can be identified and separated from the rare ones. This provides a deep understanding of the

grid behavior, knowing not only what conditions are possible (the states themselves) but which
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of them are expected to be more often (and therefore it is important to focus further efforts on

them).

• Transition probabilities: In a similar way to the state probabilities, transit on probabilities

can be determined by a simple analysis of the monitored data. This complements the previous

point, making possible to know not only which are the most frequent states but also which are

the most probable transitions.

The resulting model generated by GloBeM is basically a finite state machine (FSM), but also

includes statistical information that provides a deeper understanding of the grid behavior. As it has

been said previously the resulting states are meaningful and easy to understand, providing crucial

information on the monitored grid behavior.

7.1.4 Model stability

The three steps described above enable the construction of a FSM that models the grid behavior

for the monitored time period. Each identified state is associated with a specific set of conditions

which can be explained and are significantly different from the rest. Anyway there are some addi-

tional questions that can arise and should be answered in order to understand completely the GloBeM

process.

Maybe the most important issue is related to the generated model usefulness and stability. The

FSM obtained explains how the grid behaved along the monitored time period, but this behavior must

be also observed outside the given time. Otherwise the model could be useless. From this point of

view it is very important to find a suitable way to deal with the system variability.

The grid is an environment in constant change. From a theoretical point of view (related to the

FSM that this technique aims to build) three types of changes can be identified:

• Minor changes are subtle variations related to the specific situation of the system. In most

cases these changes are too detailed to be of any use from a global point of view, as they

depend largely on the specific moment when they occur.

• Major changes are clear variations of the system’s behavior, where some basic conditions

change. This usually indicates changes of state and the FSM generated should be able to model

them.

• Radical changes are normally related to drastic variations of the grid behavior, probably orig-

inated by great modifications on the system architecture, services provided or global usage
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patterns. In these changes most basic grid conditions change, usually rendering the FSM model

generated useless.

As it can be seen, what is considered a minor change, a major change and a radical change

depends on how detailed the behavior analysis is made. If it is assumed that the FSM generated iden-

tifies major changes, where the lines are drawn to separate these categories depends on the size of

the monitoring data set used to create the model.

A very small monitoring data set will generate very specific states, and the model will be gener-

ally over-fitted to this data. Therefore very soon as time goes by the behavior described by it will not

match the observed one and the model will turn into useless.

On the other hand, if the monitoring data set is too big, the resulting model will be too generic,

identifying only very big changes in the system’s behavior as changes of state. This kind of model

would be definitely much more stable along the time than the previous one, but also useless from a

grid management point of view.

The key factor is, in consequence, to find the right monitoring data set size so that the FSM

generated usefully models the grid behavior and also has an acceptable stability. It will always be

vulnerable to radical changes but if the data set size is determined correctly this will not happen fre-

quently.

7.1.4.1 Determining model stability and monitoring data set size

In order to select the proper monitoring data set size to generate the FSM a model stability study

must be made. An experimental example of this study can be seen in Section 7.2, but a detailed de-

scription of the generic procedure is described here.

The basic concept behind this study is to determine how long a generated model can be used given

a monitoring data set size. To express the following parameters should be taken into account:

• t is the instant where the model is generated.

• w is he monitoring window size. This is basically the size of the monitoring data set used to

generate the model.

• C(t, w) is the set of clusters observed at time t, in the first step of the Analyzing the data stage

described above. These clusters are provided as the result of the clustering algorithm used:
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DBSCAN. They are generated using monitoring information from interval (t− w, t].

• M(t, w) is the classification model generated at time t at the end of the Analyzing the data stage

described above. This classification is provided by the classification algorithm used: C4.5. It is

based on the clusters identified by C(t, w).

Therefore, at any time t a new M(t, w) model could be generated, or a previously calculated on

time t − d model M(t − d,w) could be used. In order to determine which option is the best, it is

necessary to find out if M(t− d,w) is still valid at time t.

Using the classification model M(t − d,w) over the current (t − w, t] monitoring data set will

provide with a a set of predicted states for that interval. Also, the calculation of C(t, w) will provide

a set of observed states, yet to be explained. The comparison between predicted and observed states

is the key to determine whether or not M(t− d,w) is still valid at time t.

The function F(t,w,d) is defined as the level of agreement between predicted (by M(t − d,w))
and observed (by C(t, w)) state values in the (tw, t] monitoring data set interval. The value d is

actually the distance between the data set interval (t − d − w, t − d] used to generate M(t − d,w)
and the interval (t− w, t] used to calculate C(t, w). The study of this function for different t, w and

d is the key to determine the right combination of values in order to achieve a good model stability.

7.1.4.2 Calculating the F(t,w,d) function

As it has been said, the F (t, w, d) function should measure the level of agreement between the

predicted and observed states, that is, “how close” the classification given by model M(t− d,w) and

the clustering C(t, w) are. In order to compare them the confusion matrix can be used:

Given a set of observed states O = {o1, o2, ..., oR} and predicted states P = {p1, p2, ..., pS} on

the same data set, the confusion matrix can be represented as follows:

p1 p2 ... pS Sums
o1 n11 n12 ... n1S n1.
o2 n21 n22 ... n2S n2.
... ... ... ... ...
oR nR1 nR2 ... nRS nR.

Sums n.1 n.2 ... n.S n.. = n

Where n is the number of points in the data set and nij is the number of points that are in oi and pj .

Jesús Montes Sánchez GLOBAL BEHAVIOR MODELING: A NEW APPROACH TO GRID AUTONOMIC MANAGEMENT



92 CHAPTER 7. A GLOBAL BEHAVIOR MODEL FOR UNDERSTANDING THE GRID

Several comparison indexes can be calculated based on the confusion matrix, in order to determine

how well the predicted states fit in the observed ones. The most simple is the degree of similarity (S)

between O and P , and can be expressed as follows:

S =

∑
i[max(nij)] +

∑
j [max(nij)]

2n
(7.1)

This produces a value in the [0, 1] interval, where 1 indicates that both O and P are a perfect

match and 0 that are completely different. This S index seems like a good first way of calculating the

F (t, w, d) function, but other more complex metrics can be also used.

The Rand index [Ran71] attempts to be an improved metric for clustering comparision. It is

defined by the following equation:

Rand =
a+ d

a+ b+ c+ d
(7.2)

where

a =
∑

i

∑
j

(nij

2

)
, b =

∑
i

(
ni.
2

)
− a,

c =
∑

j

(n.j

2

)
− a, d =

(
n
2

)
− a− b− c

and

a+ b+ c+ d =
(
n
2

)
As in the case of S, the Rand index produces a value in the [0, 1] interval, where 1 indicates that

both O and P are a perfect match and 0 that are completely different. Anyway this value is generally

more accurate than the one provided by the simpler S.

The Fowlkes-Mallows measure of agreement [FM83] is another index that can be used to estimate

the value of F (t, w, d). It is defined as follows:

Bk =

∑
i

∑
j n

2
ij − n√

[
∑

i(
∑

j nij)
2 − n][

∑
j(
∑

i nij)
2 − n]

(7.3)

Again the resulting Bk value falls in the [0, 1] interval, providing the same information the S and

Rand indexes do. The Fowlkes-Mallows measure of agreement is generally considered to provide

high quality measures, similar to those provided by Rand.

There are many other clustering comparison indexes that can be used to estimate F (t, w, d).

S, Rand and Bk are commonly used and accepted as valid, and therefore have been selected as
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GloBeM’s basic estimators of the F (t, w, d) function. In in the following section a real example of

how they can be used to estimate the global behavior modeling stability is presented.

7.2 Experimental validation

In order to validate the methodology presented in this chapter two different types of experiments

have been performed. The first type is based on a simulated grid environment, and its main pur-

pose is to illustrate with a practical example the detailed procedure of constructing a global behavior

model. The second one is based on real monitoring information gathered from the PlanetLab [pla]

infrastructure. The main objectives of this second experiment are to illustrate how the global behavior

modeling can be applied to a real large scale distributed environment and also to make an assessment

of the behavior model stability validation techniques described in this chapter.

The detailed characteristics of each scenario, along with the experimental results obtained are

described in the following subsections.

7.2.1 First experiment: Case of study

7.2.1.1 Scenario characteristics

In order to produce an as much realistic as possible simulation of a real grid environment, perfor-

mance statistics and job accounting information from the EGEE project [ege] were used [fNRa, fNRb,

fNRc, fNRd]. The EGEE is a project funded by the European Commission’s Sixth Framework Pro-

gramme. It connects more than 70 institutions in 27 European countries to construct a multi-science

grid infrastructure for the European Research Area. The experiment simulation was conducted using

GridSim [BM02b]. The GridSim toolkit allows modeling and simulation of entities in parallel and

distributed computing (PDC) systems-users, applications, resources, and resource brokers (sched-

ulers) for design and evaluation of grid-based applications. Nowadays it is one of the most commonly

used and accepted simulation tools specfically designed for grid environments.

The designed scenario had the following defined characteristics:

• Randomized resources: Computing resources were slightly randomized to obtain certain het-

erogeneity. The number of resources was fixed to 100, but the computing power of each of them

was randomly generated. Each resource may have one or two machines, each of them with one

or two processing elements (CPUs). The power of each processing element was randomized
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between 1000 and 5000 MIPS.

• Randomized clients: The scenario had a number of 70 clients. These clients randomly gen-

erated different types of load (basically CPU load and network load) in order to simulate the

uncontrollable changes in the system.

• Resource failures: Each resource had a random chance of failure. These were isolated failures

that temporarily disconnected the resource from the system randomly affecting its composition.

The failure parameters (probability of failure and duration of failure) were adjusted to fit real

failure rates observed on the EGEE, according to the reports above cited.

• Job dispatcher: In each scenario there was a job dispatcher that represented the grid service.

It had a queue of randomly generated jobs. Each job had three randomly generated parame-

ters: the job computing size (between 100 and 100000 millions of instructions) data input size

(between 0 and 50 MB) and data output size (also between 0 and 50 MB). These are the three

basic job parameters established by GridSim.

7.2.1.2 Experiment development and results

As it has been said, the purpose of this first experiment was to provide a detailed description

and a practical example of the global behavior model construction process. In order to achieve it

a simulated GMonE monitoring system was deployed along the GridSim simulation, configured to

gather monitoring information and produce a monitoring data set. This information was aggregated

to produce global values, finally producing the following four parameters:

• Resource CPU load average value.

• Resource CPU load standard deviation.

• Effective Network Bandwidth average value.

• Effective Network Bandwidth standard deviation.

As it can be seen, this is a very simplistic data set, but its simplicity is perfect to illustrate how the

global behavior modeling is actually achieved. A total of 30 days of simulated time were generated,

gathering a monitoring data set of all this time.

Then the monitoring data was represented using visual representation of information systems.

This technique produced a three-dimensional representation of the monitoring data, where the dis-

tance between points is proportional to their degree of dissimilarity. The result can bee seen in Figure

7.3. Clearly three different “clouds” of points can be observed, each one presumably related to a
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Figure 7.3: Three-dimensional visualization of the first experiment data set

different state. It is also clear that not all “clouds” are equally dense, probably indicating that not all

three states are equally probable. Finally some “noise” points can be seen between “clouds”, making

the task of separating them more complicated.

Entering on the second stage of the global behavior modeling technique described (analyzing the

data), the next step is to identify each state, by means of the DBSCAN clustering algorithm. The

results of the DBSCAN execution can be seen in Figure 7.4. The three intuitively seen “clouds”

were clearly identified as different clusters (the cluster membership is represented in the figure using

a different color for each cluster). Also a significant amount of noise was found, represented in the

figure as black dots. The first cluster, identified as cluster1 (plotted in red in the figure) grouped the

10% of the monitoring observations in the data set. The second one, cluster2 (plotted in green in the

figure), grouped the 16%. The last one, cluster3 (plotted in blue in the figure), grouped the 50%. The

remaining 24% was labeled as noise.

At this point it is important to understand what is the real meaning of the noise label provided by

DBSCAN. An important fraction of the total data set was determined to be noise, almost one fourth,

so it is necessary to know what are their implications.

As it has been said in previous sections, DBSCAN is a density-based clustering algorithm. This

means that it tries to find areas of the data set space where the density of points is considerably higher

than the rest. Therefore the difference of density is the key factor while identifying clusters. When

the density changes abruptly, as happens in the case of cluster1 o cluster2 on the figure, DBSCAN is

able to identify almost the entire “cloud” as member of one cluster. When the density changes grad-
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Figure 7.4: Three-dimensional clustering of the first experiment data set

ually, as in the case of cluster3, it is much more difficult for DBSCAN to “draw the frontier of the

cluster”, loosing points in the process. These lost points are labeled as noise, as they interfere in the

clustering procedure and make it more complicated. Anyway, noise points should not be considered
as outliers of any kind, as are a result not of the data set itself but of the DBSCAN characteristics. It

could be said that what DBSCAN provides is, in fact, each cluster “core” points, meaning those points

that are in the most dense areas and therefore are those how better represent the cluster characteristics.

Once the clustering is done, the next step is to perform the state characterization, by means of the

C4.5 classification algorithm. The use of this algorithm is very simple and the resulting decision tree

can be seen in Figure 7.5.

Some additional values regarding the generated classification model are also shown in Figure 7.5.

These values were obtained as the result of a stratified tenfold cross-validation of the model over the

monitoring data and provide a better understanding of its quality. As it can be seen, the model is

simple but accurate (less than a 2% of incorrectly classified instances) and the FSM can be easily

constructed from it.

Finally, the last remaining step is to actually build the FSM, based on the classification model

generated. Figure 7.6 shows the resulting FSM, displaying each state and the transition conditions.

A close analysis of the decision tree generated in the previous stage and the FSM displayed here can

provide an understandable explanation of each state:

• State 1: It is characterized by a low average network bandwidth (below 44 MB/s), probably
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Average
Effective Net BW

Average
Effective Net BW

cluster3

<= 81 MB/s                                                          > 81 MB/s

cluster2

                        > 44 MB/s

cluster1

<= 44 MB/s                       

Correctly Classified Instances 901 (98.4699%)
Incorrectly Classified Instances 14 (1.5301%)
Mean absolute error 0.0184
Relative absolute error 5.3423%
Total Number of Instances 915

Figure 7.5: Decision tree generated by the C4.5 algorithm and cross-validation results

State 1

State 2 State 3
Avg NetBW > 81 MB/s

Avg NetBW < 44 MB/s          

Avg NetBW > 44 MB/s

Avg NetBW > 81 MB/s

Avg NetBW < 81 MB/s

          Avg NetBW < 44 MB/s

Figure 7.6: Finite State Machine generated at the end of the first experiment
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mostly due to network overload. It corresponds to the cluster cluster1 observed.

• State 2: It is characterized by a medium average network bandwidth (between 44 and 81 MB/s).

It seems to represent the medium load state of the grid. It corresponds to the cluster cluster2

observed.

• State 3: It is characterized by a high average network bandwidth (over 81 MB/s). This repre-

sents a barely loaded grid, where the network can be used at full capacity. It corresponds to the

cluster cluster3 observed.

As it can be seen the resulting model is not only simple and useful, but also makes perfect sense

given the environment. It is important to remember that it has been generated without any “human

guidance”, therefore the emerging FSM is only the result of the natural grid behavior, and not influ-

enced by any previous conception or assumption.

This is, nevertheless, a very small example of the potential of this technique. The second exper-

iment is focused on a “real-life” scenario, displaying how global behavior modeling applies to real

environments and further developing its characteristics and advantages.

7.2.2 Second experiment: Real scenario

7.2.2.1 Scenario characteristics

For this second part of the experimental validation real monitoring data from PlanetLab [pla]

was used. PlanetLab is a global scientific research network, used by researchers at top academic

institutions and industrial research labs to develop new technologies for distributed storage, network

mapping, peer-to-peer systems, distributed hash tables, and query processing. PlanetLab currently

consists of 991 nodes at 485 sites, scattered all over the world. It presents all the heterogeneity, com-

plexity and variability expected from any real grid computing infrastructure, and therefore it is an

excellent scenario for testing the global behavior modeling techniques presented here.

PlanetLab provides free access to a monitoring tool called CoMon [com], capable of presenting

detailed information about the current state of each active node in the system. Many different parame-

ters are monitored, including CPU usage, memory usage, network traffic, architecture characteristics,

I/O operations, an so on. Information from this tool is beeing gathered in order to create a comprehen-

sive monitoring database of the historical evolution of PlanetLab. The information contained on this

database has been used in order to test the global behavior modeling techniques in a “real-life” sce-

nario. The basic objective of this experiment is to create a useful global behavior model of PlanetLab

and validate its quality and stability.
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7.2.2.2 Experiment objectives

Using the monitoring information gathered from PlanetLab, a new series of advanced experiment

was performed. Its objective was the empirical validation of the following GloBeM intended features:

• Model quality: The generated model should be able to describe accurately the observed be-

havior, specially in terms of the states identified.

• Model usefulness: The generated model should be understandable from a human perspective,

in order to be useful for management purposes.

• Model stability: The generated model should present at least some stability along the time, in

order to be usable.

7.2.2.3 Experiment development

For this experiment a total of 22 weeks of PlanetLab monitoring data were used. As it has been

said before, this data contained information related to each node independently, so first of all it had

to be aggregated to provide global values. Prior to this aggregation, the CoMon monitoring tool

provided the following 10 parameters:

1. Busy CPU percentage

2. Last 5 minutes CPU load

3. Memory size

4. Free memory

5. Hard disk input traffic

6. Hard disk output traffic

7. Hard disk size

8. Hard disk use

9. Network input traffic

10. Network output traffic

These are generic parameters related to the PlanetLab resources and not selected by any human

expert regarding any specific requirements (services provided, etc). The global behavior modeling

process will automatically identify those that are really relevant to the system’s behavior.
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Figure 7.7: Average cross-validation results

The data set was then fragmented in 1 hour monitoring intervals and aggregated values of average

and standard deviation were calculated for each of these 10 parameters, resulting a total of 20 global

monitoring parameters.

The data set was then divided in in many subsets, in order to generate different models in different

instants of time. The length of these subsets was also variable, with a fixed minimum distance between

monitoring subsets of 5 days. Subset sizes of 10, 20, 30, 40 and 50 days were selected generating a

total of 105 subsets (21 of each size), with different degrees of overlapping between them. All these

subsets were used to generate different global behavior models, and then compare between them.

7.2.2.4 Model quality

Using the global behavior modeling procedure described in this chapter a behavior model for

each one of the 105 data subset was generated. As in the case of the simulated scenario presented

before, the state characterization step included a stratified tenfold cross-validation, in order to provide

a measure of how the observed states were correctly identified by the classification model. As this

classification model is the basis for the finite state machine finally constructed, the result of this cross-

validation indicates how well the behavior model describes the observed global behavior. Specifically,

this test indicates the percentage of correctly classified instances in the data subset.

Figure 7.7 shows the average correctly classified instances percentage obtained, separated by

monitoring subset size. As can be seen the value slightly differs between subsets, but in no case it is

below 90%. The lowest average value is obtained by the 10 days subsets, to be precise 93.44%. The
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Average
disk usage

Average
CPU usage

<= 17.7 %                                                          > 17.7 %

State 1

                        > 52 %

State 2

<= 52 %                       

Average
memory size

State 5

                        > 2.3 GB<= 2.3 GB                       

Average
CPU usage

State 4

                        > 52 %

State 3

<= 52 %                       

Correctly Classified Instances 995 (99.1036%)
Incorrectly Classified Instances 9 (0.9864%)
Mean absolute error 0.006
Relative absolute error 2.0052%
Total Number of Instances 1004

Figure 7.8: Sample decision tree generated by the C4.5 algorithm using PlanetLab monitoring data
and cross-validation results

highest value is obtained by the 40 days subsets, specifically 95.34%. As it can be seen, the difference

is not so significant (less than 2%), making possible to affirm that the model capability to correctly

identify each observed state is very good, in all cases.

7.2.2.5 Model usefulness

A set of previously described requirements have to be fulfilled (understandability, simplicity, etc)

to obtain a useful behavior model. The PlanetLab used monitoring data produced a total of 105 dif-

ferent behavior models, each one generated using one of the monitoring subsets. Presenting here all

of them would be clearly excessive and by no means necessary, specially considering that (as has will

be explained in detail in the following section 7.2.2.6) the system’s partial stability would make most

models very similar. Instead of that, one example will be described and analyze, in order to determine

its particular characteristics and suggest possible applications. The model selected was generated us-

ing a 50 days subset of the PlanetLab monitoring data. All the global behavior modeling stages were

performed as described before and the resulting finite state machine was generated.

Figure 7.8 shows the decision tree generated by the C4.5 algorithm and the specific cross-validation

results for this model. As can be seen five different states have been identified, and the analysis of
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this tree provides the qualitative description of them:

• State 1 indicates that the average disk usage of the system is low (below 17.7%) but the CPU is

considerably loaded (higher than 52%). This can be summarized as a situation where the grid

is being used only for calculations or other CPU demanding operations.

• State 2 presents a system with low disk usage and also low CPU usage. This probably indicates

a generally low loaded system. This is also the most frequent state in the monitoring subset.

• State 3 presents a system with more disk usage than state 1 and 2 (over 17.7%) but, not a high

CPU load. Another parameter is introduced here, also indicating that average available memory

is bellow 2.3GB. This indicates a low loaded grid, but with not very much available memory

and storage capacities.

• State 4 is similar to state 3, but in this case the CPU load is higher than 52%. This seems to

be the most heavy loaded state, as the disk usage could be high and there is not much memory

available.

• State 5 indicates a system also with more disk usage than states 1 and 2 (over 17.7%) but with

a higher memory size than states 3 and 4.

Using this information a finite state machine was built, as displayed in Figure 7.9. The transitions

have been indicated in a separated table to prevent the graph from being difficult to read.

As it can be seen the resulting states and state transitions are very easy to understand and work

with, and provide valuable behavior information about the whole system. This information can now

be used to design specific grid management mechanisms adapted to the most frequent situations (rep-

resented by the five identified states) on the system.

Job scheduling can be pointed out as a possible example of how this model can be applied to

grid management. The five identified states clearly determine five different system conditions where

some jobs might be more suitable for execution. A CPU demanding job, for instance, would be more

easily and rapidly dispatched during states 2 and 3 than 1 and 4. Incorporating this information to the

job scheduler would provide significant improvement of the use of system resources, scheduling jobs

according to the system state. But not only CPU usage is present on the model, so other aspects such

as memory and disk availability could be considered, more effectively scheduling jobs depending on

their memory and storage requirements.

Generally speaking the incorporation of the global behavior model into the job scheduler could

strongly improve its effectiveness. The identified states came from observation of the system instead
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State 4State 1

State 3

State 5

State 2

Transitions
State Event Transits to

State 1 CPU use ≤ 52% State 2
Disk use > 17.7% and Mem size ≤ 2.3GB State 4
Disk use > 17.7% and Mem size > 2.3GB State 5

State 2 CPU use > 52% State 1
Disk use > 17.7% and Mem size ≤ 2.3GB State 3
Disk use > 17.7% and Mem size > 2.3GB State 5

State 3 Disk use ≤ 17.7% State 2
CPU use > 52% State 4
Mem size > 2.3GB State 5

State 4 Disk use ≤ 17.7% State 1
CPU use ≤ 52% State 3
Mem size > 2.3GB State 5

State 5 Disk use ≤ 17.7% and CPU use > 52% State 1
Disk use ≤ 17.7% and CPU use ≤ 52% State 2
Mem size ≤ 2.3GB and CPU use ≤ 52% State 3
Mem size ≤ 2.3GB and CPU use > 52% State 4

Figure 7.9: Sample finite state machine generated using PlanetLab monitoring data
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of a human expert subjective advise, therefore they are more likely to fit into the real behavior, focus-

ing only on observed events.

Anyway this is just a simple example of how this model could be used. Other applications such as

fault tolerance, storage allocation, load balancing and many more can benefit from a global behavior

modeling approach. From a more general perspective, this model could be used tu incorporate a vari-

ety of autonomic management techniques, specially in the areas of self-healing and self-optimyzing.

7.2.2.6 Model stability

In order to determine the global behavior model stability, the three clustering comparison indexes

described in previous sections were used (degree of similarity, Rand index and Fowlkes-Mallows

level of agreement). The classification model obtained from each monitoring subset was compared

to the observed states of the rest, separated by sizes (the ’10 days’ models were compared with other

’10 days’ models, ’20 days’ models with other ’20 days’ models and so on).

To better understand how this comparison was made, it is necessary to go back to the definition

of the F (t, w, d) function and see how it was calculated in the experiment:

1. First a starting monitoring subset (t − d − w, t − d] was selected. The size of this subset (10,

20, 30, 40 or 50 days) determined the value of w. This subset also corresponded to a specific

moment in time, which is t− d.

2. Using this monitoring subset, the corresponding global behavior model was generated. One of

the last steps of this construction produced the classification model M(t− d,w) (classification

model at time t− d with subset size w).

3. Then a new monitoring subset (t−w, t] was selected, of the same size of the previous one, and

therefore with the same w value. Calculating the time diference between this new subset and

the first one the values t (the time instant of the new subset) and d (the distance between both

subsets) are obtained.

4. The clustering C(t, w) was then calculated, using the new monitoring subset. The resulting

clusters are the observed states for interval (t− w, t].

5. The next step was to apply model M(t − d,w) to the new (t − w, t] monitoring subset. This

produces a set of predicted states.

6. Finally one of the clustering comparison indexes was used to compare observed and predicted

states. The resulting value can be used as an estimator of F (t, w, d).
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Figure 7.10: Average S index values

Repeating this operation for all possible combinations of t, w and d (in the monitoring data set)

generates an estimation of the F (t, w, d) function, based on the clustering comparison index selected.

As three different indexes were used, three different estimations of this function are presented, each

one based on one of them.

Figure 7.10 shows the estimation of the F (t, w, d) function using the degree of similarity (S) in-

dex. The X axis indicates the distance d between the two subsets compared and the Y axis measures

the S index value obtained. Instead of plotting 105 curves (one for every subset), the obtained values

have been grouped (using average values) by w value, displaying five curves for 10, 20, 30, 40 and 50

days monitoring subsets. An additional sixth curve is also plotted, displaying the total average values

of the other five ones.

The first thing that can be seen in Figure 7.10 is that all plotted curves have a S index value very

close to 1 at distance d = 0. This is perfectly understandable and expected, as at distance 0 the two

compared subset are in fact the same one, and, as it has been previously said, the cross-validation

performed on the classification models generated presented very good results (around 95%). After

that the curves decrease at different speeds, basically depending on the size of w. To understand this

is important to remember that when the distance is small there might be overlapped data between the

two subsets compared. For instance, a 30 days subset compared with another that is only 10 days

away will have 20 days of information shared with it. This overlapped data makes the two subsets

very similar (as they positively share some values) and therefore the classification model will natu-

rally predict the states better. These first values are considered unrealistic for stability measurement

procedures, as the real intention is to compare completely different subsets. Therefore the most im-
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portant information displayed on Figure 7.10 begins when the distance d is higher than 50 (so there

is no overlapped data in any case).

Since that moment the most significant information is revealed: the similarity index values seem

to stabilize around 0.78. This is important for two main reasons:

• First of all this seems to indicate that there is real behavior stability within the system. There-

fore a behavior model generated at a given time can predict the grid behavior at any other time,

with a certain level of error. The fact that the F (t, w, d) function estimator seems to be stable

along the time (once cleared of the “overlapping effect”) indicates that, even though there is

real variability on the system, there is very possibly also a basic almost stable behavior. A

global behavior model such a finite state machine seems, in consequence, to be a suitable rep-

resentation of this basic behavior, in order to improve long-term management and performance

prediction. Global behavior prediction issues are dicussed in detail in Chapter 9.

• The second reason why the stabilization of the F (t, w, d) function is important is because the

value is high enough (0.78 in this case). This means that there is an important amount of

behavior information that keeps constant along the time, which is the basic behavior above

mentioned. It also indicates that the prediction error of a generated model will probably be

within acceptable limits, as it is able to correctly identify a great part of the grid behavior.

Besides, Figure 7.10 shows that, once the F (t, w, d) function is stabilized, there is not a big dif-

ference between different values of w. All models seem to present very close similarity values. This

seems to indicate that the size of w is not as important as was originally believed, as 10 days models

seem to provide as good results as 50 days ones.

Even though the results presented in Figure 7.10 provide very significant information, it is impor-

tant to use more than one comparison index in order to really validate them.

Figure 7.11 shows the same results commented above, but using the Rand index as clustering

comparison tool. The data is still grouped by w value, the X axis indicates the distance between

compared subsets and the Y axis shows the average value of the Rand index for each case.

As it can be seen the basic patterns observed in the previous case are still present, but the different

index used incorporates new information to the graph.

The improved agreement due to overlapped data (the “overlapping effect” described above) is

much more evident in this case, specially when comparing the ’10 days’ and ’50 days’ case. The
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Figure 7.11: Average Rand index values

stabilization of the F (t, w, d) function is present here as well, but less clearly than in the previous

case. All curves show a very similar behavior (after the model distance is higher than 50) and all tend

to stability, but there are still some variations present. Anyway the tendency to stability can be seen,

happening in this case around a value of 0.5 in the Rand index.

Generally speaking, the Rand index seems much more sensitive to data variations, providing

reasonably good values but lacking the clearness of the previous case. The use of another index is

required to clarify these results, indicating if the conclusions obtained with the first index are valid.

To solve these doubts the more accurate Fowlkes-Mallows level of agreement (Bk) index was used.

The results obtained, represented in the same way as the two previous cases, can be seen in Figure

7.12.

The Fowlkes-Mallows index (Bk) clearly identifies the “overlapping effect” when d is small, as

the S index and more clearly the Rand index did. The Fowlkes-Mallows index evolution also displays

the clear model stability observed in the first case. The F (t, w, d) function is stabilized now around

0.63.

The results provided by this third index clearly support the conclusions extracted from the case of

the S index, showing a clear behavior stability and a great amount of constant behavior information

that can be identified with any model generated.

At this point, it is important to consider the three stability values obtained for the F (t, w, d)

function using the three cluster comparison indexes. The first one provided 0.78, the second one
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Figure 7.12: Average Fowlkes-Mallows level of agreement (Bk) values

0.5 and the third one 0.63. These values can not be numerically compared, as they came from

different indexes. What can be compared is the qualitative meaning of these values, as all three

indexes are designed to provide information regarding the same thing. From this point of view,

all three indexes results indicate that there is a reasonably good agreement between the clustering

compared, supporting the conclusion that the system behavior has certain stability thoughtout time

and also there is an important amount of its behavior that is constant and can be globally modeled and

predicted.
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Chapter 8

Service-level autonomic
management based on global
behavior modeling

The GloBeM methodology described in Chapter 7 generates a simple, descriptive model of the grid

global behavior. This model provides insight on the system’s total state, specially convenient in

service-level autonomic management and other related global aspects. In this chapter, the usefullness

of the GloBeM approach is further studied, providing experimental results based on global behav-

ior modeling in the autonomic computing areas of self-optimizing and self-healing. Firstly, a self-

optimizing case of study is presented and described in detail, focusing on grid data storage quality

of service. Secondly, a specially designed global autonomic management framework is introduced,

presenting a simple self-healing use case to provide computational grid global fault tolerance.

8.1 Incorporating self-optimizing capabilities in grid data
storage services

As distributed, global-scale, data-intensive applications are becoming more and more common,

an increasing pressure is being put on the underlying distributed data services. As such services need

to support massively concurrent, largely distributed accesses to huge shared datasets, the stability

and scalability of their performance are critical. More specifically, the ability to sustain a stable high

throughput is a very desirable property, as it strongly impacts the quality of service of the data storage
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system and thereby the overall application performance. Handling quality of service in a grid sys-

tem is however a very difficult task, as a very large number of factors are involved: the data access

patterns, the status of a huge number of physical components, etc. In this Section an approach to

self-optimizing autonomic management is explored, based on global behavior modeling combined

with client-side quality of service feedback. This case of study main objective is to automate the

process of identifying dangerous behavior patterns in storage services. To demonstrate our approach,

global behavior knowlledge provided by GloBeM is used to improve quality of service in Blob-

Seer [NAB09a, NAB09b], a distributed storage service for large-scale data-intensive applications.

BlobSeer is specifically designed to sustain high throughput under heavy access concurrency. This

improvement is evaluated through extensive experimentation on the Grid’5000 testbed using hard

experimental conditions: highly-concurrent data access patterns for long periods of service uptime,

while supporting failures of the physical storage components. Results show substantial progress in

sustaining a higher and more stable data access throughput.

8.1.1 Case of study: BlobSeer

For this case of study, the BlobSeer distributed data service was chosen as an experimental play-

ground for investigating the expected benefits of the GloBeM approach. BlobSeer has specifically

been designed to deal with the requirements of large-scale data-intensive distributed applications that

process raw unstructured data.

BlobSeer consists of a series of distributed communicating processes, as shown in Figure 8.1. In

BlobSeer, data is stored as unstructured sequences of bytes called BLOBs (Binary Large OBject).

Each BLOB is made up of fixed-size chunks that are distributed among data providers. Clients read,

write and append data to/from BLOBs. Data-intensive distributed applications typically employ a

large number of processing elements that access the BLOB concurrently. Metadata facilitates access

to a range (offset, size) for any existing version of a BLOB, by associating such a range with the data

providers where the corresponding chunks are located. Metadata is stored and managed on metadata

providers through a decentralized, DHT-based infrastructure (see details below). A central version

manager, is in charge of assigning versions and of exposing newly created versions to the readers in

such way as to ensure consistency. Finally, a provider manager decides which chunks are stored on

which data providers when writes or appends are issued by the clients.

The goal of BlobSeer is to sustain high throughput under heavy access concurrency in reading,

writing and appending. Three key design factors enabling BlobSeer to address these requirements are

data striping, distributed metadata management and versioning-based concurrency control.
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Figure 8.1: Architecture of BlobSeer

8.1.2 Improving QoS in BlobSeer using GloBeM

The high complexity of storage services in large-scale data-intensive settings makes it difficult

to analyze the behavior of the system by explicitly considering every individual resource separately.

The use of the global behavior modeling techniques described in Chapter 7 can substantially help by

providing a valuable insight into the system’s performance and evolution. GloBeM can automatically

construct a descriptive global behavior model of BlobSeer’s operation that can be used to identify

bottlenecks and improve the overall performance and quality of service.

8.1.2.1 Experimental methodology

To achieve the indicated goal the following methodology was defined. Synthetic data-intensive

workloads were applied to BlobSeer instances running in a grid setting for long enough time so that

relevant behavior can be observed. To provide a realistic scenario, BlobSeer running instances were

subjected to a failure-scenario generated by a failure-injection framework specially implemented,

which was responsible for simulating data providers going down and becoming available again ac-

cording to typical failure patterns observed in such large-scale setups. BlobSeer was then monitored

throughout its run time and the monitoring information was fed to GloBeM in order to automatically
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Figure 8.2: Improving QoS in BlobSeer by means of GloBeM

characterize BlobSeer’s behavior. This in turn allowed to identify potential adjustments to BlobSeer

that could be used to improve its performance and increase its quality of service. Fig. 8.2 shows a

graphical description of the whole process.

8.1.2.2 Generating a data-intensive workload

A typical scenario in grid data-intensive applications consists in continuously acquiring (and pos-

sibly updating) huge datasets of unstructured data while performing large-scale computations over

the data. For example, crawling the web for new content such as text, audio, video may proceed in

parallel with a processing phase for these information to build search index structures, aggregated

statistics or discover new knowledge useful for Internet services or scientific applications [Bry07].

For this reason, generating a typical data-intensive workload involves two aspects: i) a write access

pattern that corresponds to constant data gathering and maintenance of data in the system and (in

parallel) ii) a read access pattern that corresponds to the data processing.

As explained in [GGL03], because managing a very large set of small files is not feasible, data is

typically gathered in few but enormous files. Moreover, experience with data-intensive applications

has shown that these extremely large files are generated mostly by appending records concurrently

and seldom overwriting any record. To reproduce this behavior in BlobSeer, a small number of

BLOBs were created and several clients were deployed, generating and writing random data con-

currently to the BLOBs. Each client predominantly appended and occasionally overwrited chunks of
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64 MB to a randomly selected BLOB at random time intervals, sleeping meanwhile. The frequency of

writes corresponded to an average constant pressure of 1MB/s on each of the BlobSeer data providers

throughout the experiment duration.

8.1.2.3 Data intensive processing through MapReduce

In order to model the data processing aspect, workloads generated by MapReduce [DG08] appli-

cations were considered, which typically scan the whole dataset in parallel and aggregate interesting

information about it. This translates into a highly concurrent read access pattern to the same BLOB.

Note that writing the final end result is negligible, because most of the time it is a single aggregated

value, such as the number of times a certain pattern occurred in the dataset. For this reason, modeling

writes of end results was omitted. To reproduce the highly concurrent read access pattern, clients that

perform parallel reads of chunks of 64MB from the same BLOB version were implemented. This data

computation was simulated simply by keeping the CPU busy. An average I/O time to computation

time ratio of 1:7 was kept (which is typical for MapReduce applications). As it is highly likely that

computations of chunks from the same BLOB take similar amount of time to complete, we needed

to compensate for this effect. To this end reads were adjusted to happen, unlike the case of writes, in

bursts that put a more variable pressure on the data providers.

Both data gathering and data processing were executed concurrently in order to simulate a realistic

setting where data is constantly analyzed while updates are processed in the background. The clients

were implemented in such way as to target an overall write to read ratio of 1:10.

8.1.2.4 Simulating resource failures

Since real grid environments are subject to resource failures, a data provider failure-injection

framework was implemented. This framework models resource failure patterns observed in real

large-scale systems build from commodity hardware that run for long periods of time. The multi-

state resource availability characterization study described in [RL07] was used, in order to generate

random resource failure scenarios for these experiments.

In these failure scenarios, each data provider was assigned a predefined behavior in time: when it

was unavailable and when it was available. A transition from available to unavailable meant killing

the data provider, while a transition from unavailable to available caused the data provider to be

restarted. Individual behavior of all providers was generated in such way that the global behavior

coresponded to the results obtained in the above mentioned study.
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8.1.2.5 Monitoring data providers

A wide range of monitoring parameters were periodically collected. These parameters describe

the state of each data provider of the BlobSeer instance. For this task the monitoring framework

GMonE [gmo, Sán08] was used.

GMonE runs a process called resource monitor on every node to be monitored. Each such node

publishes monitoring information to one or more monitoring archives at regular time intervals. These

monitoring archives act as subscribers and gather the monitoring information in a database, construct-

ing a historical record of the system’s evolution.

Resource monitors can be customized with monitoring plugins, used to adapt the monitoring

process to a specific scenario by selecting relevant monitoring information.A BlobSeer monitoring

plug-in was developed, responsible for monitoring each provider and for pushing the following pa-

rameters into the GMonE archive: number of read operations, number of write operations, free space

available, CPU load and memory usage. These parameters represent the state of the provider at any

specific moment in time. Every node running a data provider that is alive (was not rendered unavail-

able by the failure-injector) published this information each 45 seconds to a single central monitoring

archive that stored the monitoring information for the whole experiment.

8.1.2.6 Building the global history record

Once the monitoring information was gathered, an aggregation process was undertaken, in or-

der to calculate global values. Mean and standard deviation values were calculated for each of the

five previous metrics, producing general descriptors of the system global behavior. Additionally, the

number of data providers available was included as an additional parameter. The resulting set of

monitoring metrics (mean and standard deviation for each data provider metric plus the number of

available data providers) provided a global historical record of the BlobSeer behavior.

8.1.2.7 GloBeM behavior analysis

The historical data above mentioned was then fed into GloBeM in order to model BlobSeer’s

global system behavior into a finite set of states. Thanks to GloBeM, this process is fully automated

and a characterization of the system states was obtained, in terms of the most important parameters

that lead to each state. Client-side information was collected as well: what operations were per-

formed, if they were successful and how well the operations did perform in terms of performance
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measurements such as observed bandwidth from the client point of view.

8.1.2.8 Behavior model interpretation

Using the client-side information and the BlobSeer states characterization, we can reason about

aspects of BlobSeer that can be improved to cope with such data-intensive workloads. More precisely,

we classify states into desirable states that offer good performance to the clients and undesirable

states that offer poorer performance to the clients.

8.1.2.9 Improving BlobSeer

Finally, the challenge was to incorporate self-optimizing autonomic capabilities into BlobSeer,

improving its behavior in such way as to avoid undesirable states. As this is completely dependent on

the characterization of the states obtained by using GloBeM and part of the experimental results, this

aspect is described in detail in Section 8.1.3. For now, it is important to stress that modeling the be-

havior of BlobSeer hard, realistic conditions applied simultaneously to recreate a real-life behavior is

an inherently difficult problem. The use of GloBeM helped to address this problem using global state

identification. This approach enabled to identify improvements that would have been very difficult to

detect by other means.

8.1.3 Experimental evaluation

Section 8.1.2 describes how to apply GloBeM behavior modeling techniques to improve Blob-

Seer, optimizing it for a data-intensive access pattern. In the following section the experimental

procedures and results obtained are described.

8.1.3.1 Experimental setup

Experiments were performed on the Grid’5000 [JLL+06] testbed, a highly configurable and con-

trollable experimental grid platform gathering 9 sites in France. Nodes from the Lille (130 nodes)

and Orsay (275 nodes) clusters were used. The nodes are outfitted with x86_64 CPUs, and 2 GB

of RAM. Raw buffered reads from the hard drives were measured, observing values at 61.8MB/s

on Lille and 53.2 MB/s on Orsay. These measures were obtained using the hdparm standard Linux

utility. Internode bandwidth is 1 Gbit/s (we measured 117.5 MB/s for TCP end-to-end sockets with

MTU of 1500 B) and latency is 0.1 ms.
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MapReduce-style computing systems are traditionally running on commodity hardware, collo-

cating computation and storage on the same physical resources. Recent proposals [SRC09] advocate

the use of converged networks to decouple the computation from storage in order to enable a more

flexible and efficient datacenter design.

We aim at evaluating the benefits of applying global behavior modeling to BlobSeer in both

scenarios. For this purpose, the Lille cluster was used to model collocation of computation and stor-

age on the same physical node and the Orsay cluster to model decoupled computation and storage.

More specifically, in the case of Lille cluster a version manager, a provider manager and 15 metadata

providers were executed on dedicated nodes. In further 110 nodes a data provider and a BlobSeer

client that generates the data-intensive workload were codeployed in each resource.

In the case of Orsay, we set up a version manager, a provider manager and 15 metadata providers

on dedicated nodes. This time data providers were deployed on 120 dedicated nodes and another 120

dedicated nodes were used to run the clients that generate the workload.

In both scenarios each node that ran a data provider also executed a GMonE resource monitor.

This monitor was responsible to collect the monitoring data throughout the experimentation. Further,

in each of the clusters a special node was reserved to act as the GMonE monitoring archive that col-

lected the monitoring information from all resource monitors.

From now on the scenario that models collocation of computation and storage on the Lille cluster

will be refered simply as setting A and the scenario that models decoupled computation and storage

on the Orsay cluster as setting B.

8.1.3.2 Results

To evaluate the benefits of applying global behavior modeling to BlobSeer, a multi-stage experi-

mentation was perfomed, involving:

1. Running and monitoring an original BlobSeer instance under the data-intensive access pattern

and failure scenario described in Section 8.1.2.

2. Interpreting the monitoring results by applying GloBeM.

3. Identifying and developing a self-optimizing improvement from BlobSeer.
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4. Running an improved BlobSeer instance in the same conditions as the original instance.

5. Comparing the results and proving the improvement hinted by GloBeM was indeed successful

in providing self-optimization capabilities, raising the BlobSeer’s performance.

This multi-stage experimentation was performed for both settings A and B described in Sec-

tion 8.1.3.1.

A BlobSeer instance was executed in both settings A and B, while the entire process was moni-

tored using GMonE. Once the historical monitoring records were parsed successfully, GloBeM was

applied to generate the global behavior model for each of the two experiments. Both experiments ran

for a fixed duration of 10 hours. The data-intensive workload accessed a total of ' 11TB of data on

setting A, out of which ' 1.3TB was written and the rest read. Similarly, a total of ' 17TB of data

was generated on setting B, out of which ' 1.5TB was written and the rest read.

GloBeM analysis produced a set of global states, indicating statistical information that charac-

terizes each one of them. As explained in Chapter 7, the GloBeM process involves the use of a

combination of information representation and machine learning techniques. Its objective is to iden-

tify similarities in the historical monitoring information and use them to infer behavior patterns as

system states. A statistical analysis is then performed in order to obtain representative descriptors for

each distinctive behavior that was detected. Tables 8.1 and 8.2 show the average values for the most

representative monitoring metrics in each global state, for both settings A and B. As can be seen,

GloBeM identified four possible states in the case of setting A and three in the case of setting B.

Table 8.1: Global states - Setting A
parameter State 1 State 2 State 3 State 4
Avg. read ops. 68.9 121.2 60.0 98.7
Read ops stdev. 10.5 15.8 9.9 16.7
Avg. write ops. 43.2 38.4 45.3 38.5
Write ops stdev. 4.9 4.7 5.2 7.4
Free space stdev. 3.1e7 82.1e7 84.6e7 89.4e7
Nr. of providers 107.0 102.7 96.4 97.2

These behavior models were combined with additional metrics extracted from the client logs (as

explained in Section 8.1.2), in order to identify a relationship between internal global behavior pat-

terns (observed by GloBeM) and service quality and performance. The number of read faults and

effective read bandwidth were considered to be relevant metrics from the client point of view.
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Table 8.2: Global states - Setting B
parameter State 1 State 2 State 3
Avg. read ops. 98.6 202.3 125.5
Read ops stdev. 17.7 27.6 21.9
Avg. write ops. 35.2 27.5 33.1
Write ops stdev. 4.5 3.9 4.5
Free space stdev. 17.2e6 13.0e6 15.5e6
Nr. of providers 129.2 126.2 122.0

Average read bandwidths for each of the states are represented in Tables 8.3 and 8.4 for both

settings A and B. Figures 8.3(a) and 8.3(b) depict evolution in time of the total number of read faults

as observed by the clients for both scenarios. At this point it is important to remember that these

are client related data and, therefore, neither read bandwidth nor failure information was available to

GloBeM when identifying the states. Nevertheless, the different global patterns identified correspond

to clearly different behavior in terms of client metrics, as Tables 8.3 and 8.4 and Figures 8.3(a) and

8.3(b) show.

Table 8.3: Average read bandwith - Setting A
State 1 State 2 State 3 State 4
24.2 20.1 31.5 23.9

units are MB/s

Table 8.4: Average read bandwith - Setting B
State 1 State 2 State 3
50.7 35.0 47.0

units are MB/s

As previously described, the GloBeM analysis generated two global behavior models, each one

corresponding to the behavior of BlobSeer in settings A and B. Further analysis was performed using

the effective read bandwidth and number of read faults as observed from the client point of view in

order to classify the states of the behavior models into desired states (where the performance metrics

are satisfactory) and undesired states (where the results of the performance metrics can be improved).

In the case of setting A, State 2 presents the lowest average read bandwidth (' 20MB/s). It is

also the state where most read faults occur, and where the failure pattern is more erratic. A similar

situation occurs with setting B. In this case again State 2 is the one with the lowest average bandwidth

(' 35MB/s) and the most erratic read fault behavior. We conclude these states (State 2 in both

settings A and B) to be undesired, because the worst quality of service is observed from the client

point of view.

Considering now the global state characterization provided by GloBeM for both scenarios (Tables

8.1 and 8.2), a distinctive pattern can be identified for these undesired states: both have clearly the

highest average number of read operations and, in the case of setting B specifically, a high standard
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Figure 8.3: Read faults: states are represented with different point styles
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deviation for the number of read operations. This indicates a state where the data providers are under

heavy read load (hence the high average value) and the read operation completion times are fluctuat-

ing (hence the high standard deviation).

Now that the problem has been identified, we aim at improving BlobSeer by implementing a self-

optimizing mechanism that tries to avoid reaching the undesired states described above. Since the

system is under constant write load in all states for both settings A and B (Tables 8.1 and 8.2) we

aim at reducing the total I/O pressure on every data provider by avoiding to allocate providers under

heavy read load to store new chunks generated by writers.

This in turn improves the read throughput but at the cost of a slightly less balanced chunk dis-

tribution. This eventually affects the throughput of future read operations on the newly written data.

For this reason, avoiding writes on providers with heavy read loads is just an emergency measure to

prevent reaching an undesired state. During normal functioning with non-critically high read loads,

the original load-balancing strategy for writes can be used. The self-optimizing autonomic strategy

mut be able to distinguish this situation, selecting a different mechanism to allocate data providers

depending on the system global state.

The average read operation characterization provided by GloBeM for State 2, which is the unde-

sired state (both in settings A and B), is the key threshold (121.2 average total simultaneous read ops.

in setting A and 202.3 average total simultaneous read ops. in setting B) to decide when a provider is

considered to be under heavy read load and should not store new chunks. This idea was implemented

in the chunk allocation strategy of the provider manager. Since data providers report periodically to

the provider manager with statistics, it is simply a matter of avoiding choosing providers for which the

average number of read operations goes higher than the threshold. Those providers will be obviusly

enabled to be choosed again when the number of read operations goes below this threshold. The same

experiments were again conducted in the exact same conditions, (for both settings A and B), using in

this case the improved self-optimizing BlobSeer chunk allocation strategy. As explained, the purpose

of this new strategy is to improve the overall quality of service by avoiding the undesirable states

identified by GloBeM (State 2 in both setting A and setting B).

As final measure of the quality of service improvement, a deeper statistical comparison of the

average read bandwidth observed by the clients was done. Figures 8.4(a) and 8.4(b) show the read

bandwith distribution for each experimental scenario. In each case, the values of the original and

improved BlobSeer version are compared. Additionally, Table 8.5 shows the average and standard

deviation observed in each experiment scenario.
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Figure 8.4: Read bandwidth stability: distribution comparison
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Table 8.5: Statistical descriptors for read bandwith (MB/s)
Scenario mean (MB/s) standard deviation
Setting A - Initial 24.9 9.6
Setting A - Advanced strategy 27.5 7.3
Setting B - Initial 44.7 10.5
Setting B - Advanced strategy 44.7 8.4

The results seem to indicate a clear improvement (especially in setting A). However, in order to

eliminate the possibility of reaching this conclusion simply because of different biases in the moni-

toring samples, we need further statistical assessment. In order to consider differences in values on

Figures 8.4(a) and 8.4(b) and Table 8.5 as statistically meaningful, we need to ensure that the different

monitoring samples are in fact obtained from different probability distributions. This would certify

that the quality of service improvement observed is real, and not a matter of simple bias.

The read bandwidth observations were compared using the Kolmogorov-Smirnov statistical test

[Ste74]. This technique works under the null hypothesis that the samples are drawn from the same

distribution. A statistically meaningful result indicating that the null hypothesis is false1 would val-

idate the differences observed with the new BlobSeer strategy. The test results can be seen in Table

8.6. The values obtained clearly indicate that the null hypothesis is false in both cases, which vali-

dates the statistical relevance of the differences observed.

Table 8.6: Kolmogorov-Smirnov test results
Scenario p-value
Setting A 2.098e−14
Setting B 0.004529

Finally, the results show that the inclusion of the self-optimizing strategy caused a clear quality

of service improvement in both settings A and B. In setting A, the average read bandwidth shows a

10% increase and, which is more important, the standard deviation was reduced substantially. This

indicates a lesser degree of dispersion in the effective read bandwidth observed, and therefore a much

more stable bandwidth (for which the difference between the expected bandwidth (the mean value)

and the real bandwidth as measured by the client is lower). As it has been said, these read bandwidth

mean and standard deviation improvements indicate a significant increase in the overall data access

quality of service.

1In statistical hypothesis testing, the p-value is the probability of obtaining a test statistic at least as extreme as the
one that was actually observed, assuming that the null hypothesis is true. For our work we have considered that a p-value
≤ 0.01 result in the test is statistically meaningful proof that the null hypothesis is false.
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In setting B, the average read bandwidth remained stable, which is understandable given that, as

explained in Section 8.1.3.1, we are close to the maximum physical hard drive transfer rate limit of

the testbed characteristics and, therefore, achieving a higher value is very difficult. Nevertheless, the

read bandwidth standard deviation was again significantly reduced, resulting in a much more stable

data access and, therefore, improved data access quality of service.

8.2 A global behavior autonomic management framework

Combining the ideas of single entity view, total state and service-level autonomic computing, a

management framework called FIRE2 has been developed as part of this work. The basic idea behind

FIRE is that, if several states can be distinguished within a grid (the way GloBeM does it), different

environment behavior should be obviously expected for each one of them. It seems reasonable to

assume that not all management techniques would be optimal for every state. Therefore, if a set of

compatible management policies are available, it would be essential to identify which one is most

adequate for each state and provide the necessary mechanisms to switch between them when the sys-

tem transits from one state to another. FIRE’s main purpose is exactly that: to serve as a simple but

effective automated policy selector, based on a GloBeM’s finite state machine model of the system’s

behavior.

FIRE’s most important characteristic are:

• It monitors the system (by means of a monitoring infrastructure) and represents the information

in the same way the global behavior modelling procedure (GloBeM) does.

• Based on the represented monitoring information, it determines the current system state, by

means of a previously provided finite state machine model.

• It activates the correct policy for the current state. The corresponding policy for each state must

also be provided to FIRE as part of its configuration.

• The policies controlled by FIRE can be of any kind. Typical examples of this are a set of

interchangeable job scheduling policies or data management and replication policies. FIRE has

to communicate with the proper management subsystem (job scheduler, data manager, etc) in

order to activate the proper policy.
2The acronym FIRE stands for “FIRE Isn’t just a Replication Environment”. The reason behind that name is that the

system was originally conceived as a data replication policies manager. Nowadays it has grown beyond that, to deal with
different types of service-level autonomic management.
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• FIRE has been designed as a grid computing management framework. Therefore it is directly

integrated in this kind of systems. As in the case of the global behavior modelling methodology,

the common basic characteristics between grid computing and other large scale distributed

systems makes easy to adapt FIRE to other similar environments.

FIRE requires of some initial configuration (providing the finite state model and the corresponding

policies) an therefore it is not a completely autonomic system. Anyway, it makes the administration

work much easier. Once the finite state machine is automatically generated, the system administrator

only has to decide which policy fits better in each state, in order to increase dependability.

8.2.1 Architecture of FIRE

Figure 8.5 illustrates the FIRE’s architecture. It has been designed to provide an extensible,

adaptive, autonomic framework for grid management. From an autonomic point of view, the system

must present the following elements [IBM06]:

• Sensors (the eyes): These are the elements that gather information about the grid evolution and

behavior. To this purpose FIRE takes advantage of a grid monitoring service. More specifically,

it uses the GMonE tool mentioned in Chapter 7 and previous Section 8.1.2.

• Effectors (the hands): These are the elements that perform the actual grid management, fol-

lowing a specific policy or set of policies. The specific characteristics of these effectors change

depending on the grid services and applications. In a data grid, for instance the effectors would

be those software tools in charge of the management operations such as data allocation, load

balancing, etc.

• Knowledge (the brain): This the autonomic system’s core. It contains the necessary informa-

tion and capabilities to perform four basic tasks:

1. Monitor (by means of the sensors): This makes the system aware of its own state.

2. Analyze: This makes possible to understand the system’s state in terms of the behavior

model in use. In the case of FIRE, this analysis is based on a global behavior model

generated using the GloBeM methodology.

3. Plan: Once the system’s behavior has been observed and understood, the appropriate

management decisions are made, in order to self-adapt to the current conditions.

4. Execute (by means of the effectors): The planned decisions are executed.

These four tasks are the base to provide autonomic capabilities to the grid management mech-

anisms. FIRE is focused on these aspects, providing the knowledge element in the grid auto-

nomic management.
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Figure 8.5: FIRE’s architecture

At it can be seen in figure 8.5, FIRE itself does not stand as a complete autonomic solution, but

as a basic framework to incorporate autonomic capabilities to a grid management system. From an

architectural point of view it is designed around an standard event channel3 in order to naturally

increase its modularity and simplify its adaptation to different management problems. FIRE has three

main elements: the event channel and the two main modules, connected through it (the Status Man-

ager and the Policy Manager). It may contain also some other additional modules, in order to add

new functionalities.

The Status Manager gathers monitoring information from the system resources. Then, with the

use of the GloBeM finite state machine model, determines the current state and notifies it tho the

Policy Manager. The Policy Manager receives the current state and determines which policy is to be

activated. It then activates the policy and notifies this fact to the corresponding management subsys-

tem. A more detailed description of FIRE’s architecture can be found in Appendix A.

3This is a standard software design technique where communication between modules is carried out by a central event
manager. A set of events are specified and the different modules can act as event publishers and/or event subscribers. This
structure strongly simplifies the introduction of new modules on the system.
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8.2.2 Incorporating self-healing capabilities in grid computational ser-
vices using FIRE

Using FIRE as a basic autonomic framework, system administrators can effectively manage a

large scale distributed system without being overwhelmed by the environment complexity. The total

state, service oriented behavior model is the key to see the big picture and focus on global manage-

ment.

To easily illustrate this, a simple simulated scenario is going to be described, indicating the FIRE

configuration and performace. This initial experiment is based on the simulated grid modeled by

GloBeM in Section 7.2.1. In that subsection the detailed GloBeM process was illustrated using a

simulated GridSim system, based on statistical information from the EGEE project. The purpose of

this basic experiment is not, in any case, to demonstrate FIRE’s full potential but to demonstrate its

benefits and functionalities in the simplest way possible.

It has been said that FIRE can address many different problems, depending on the management

system or systems it is working with and the set of policies provided. One of the most common uses

of large scale distributed systems in general and grid computing in particular is job execution (com-

putational grids). The distributed nature of the environment allows to run multiple jobs in different

resources, but to efficiently do it, an adequate job scheduler is required. The capabilities of this sched-

uler can almost entirely establish the system’s performance and dependability, and therefore they are

of maximum importance.

For this experiment, a job execution service was simulated. Since FIRE addresses service-level

autonomic management, different autonomic areas can be adressed. In this case the experiment was

focused on self-healing capabilities, regarding from a system’s total state and global behavior point

of view.

To correclty model the system total state, the basic monitoring parameters of the experiment must

be not only focused on the grid resources, but also service oriented. In this sense, job failure rate

can be used to measure the QoS provided by this service from a self-healing point of view. Thus,

randomly generated jobs were submitted to the simulated grid through a job scheduler and their fail-

ure rate was measured. To determine a job failure, a time deadline was established for each of them,

based on its time of submission and job size. A job failure, in consequence, could be originated by

a resource crash, a network overload, etc. The objective of this experiment was to show how FIRE,

with the appropriate policies, can increase system’s dependability by providing self-healing capabili-

ties that lower the job failure rate.
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The experiment characteristics will be very briefly summarized here (for a more detailed expla-

nation please refer to the above mentioned Chapter 7):

• Randomized resources: The number of resources was fixed for each scenario, but the com-

puting power of each of them was randomly generated. Each resource may have one or two

machines, each of them with one or two processing elements (CPUs). The power of each

processing element was randomized between 1000 and 5000 MIPS.

• Randomized clients: Each scenario had a different number of clients. These clients function

was to randomly generate different types of load (basically CPU load and network load) in

order to simulate the uncontrollable changes in the system.

• Resource failures: Each resource had a random chance of failure. These were isolated failures

that temporarily disconnected the resource from the system randomly affecting its composition.

The failure parameters (probability of failure and duration of failure) were adjusted to fit real

job failure rates observed on the EGEE (this is explained in more detail below).

• Job dispatcher: In each scenario there was a job dispatcher that represented the grid service.

It had a queue of randomly generated jobs. Each job had three randomly generated parame-

ters: the job computing size (between 100 and 100000 millions of instructions) data input size

(between 0 and 50 MB) and data output size (also between 0 and 50 MB). These are the three

basic job parameters established by GridSim.

Table 8.7 shows the different parameters established for each simulation scenario. Tests simulated

30 days of execution of these environments.

Table 8.7: Test scenarios
Scenario name 20R 50R 100R
Num. resources 20 50 100
Num. CPU load clients 10 25 50
Num. Net load clients 10 20 20

Since, in this scenario, FIRE aims at providing fault tolerance (self-healing capabilities), one of

the main aspects that must be considered in order to perform a realistic simulation of this grid en-

vironment is job failure rate. As EGEE was used as a reference for the simulated scenarios, it was

important o reproduce the same failure rates observed in the real environment. The above mentioned

references show that this parameter oscillates due to many factors, but it is usually around 16%. For
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the simulated scenarios, it was decided to generate a basis job failure rate of 16%, and then show

how the use of FIRE lowers this rate. This value includes any kind of job failure, both generated by

resource failures and/or network problems.

8.2.2.1 Behavior model

Prior to performing the FIRE tests, an initial configuration was designed for comparative pur-

poses. This configuration used FCFS (First-come, first-served) as the only job scheduler policy, so

jobs were always strictly dispatched in the order they arrived. It was executed on all three test scenar-

ios and a behavior model was generated using GloBeM. The detailed process of this construction can

be seen in Section 7.2.1.

State 1

State 2 State 3
Avg NetBW > 81 MB/s

Avg NetBW < 44 MB/s          

Avg NetBW > 44 MB/s

Avg NetBW > 81 MB/s

Avg NetBW < 81 MB/s

          Avg NetBW < 44 MB/s

Figure 8.6: Global behavior model of the test scenario

The resulting FSM is again presented in Figure 8.6. It is important to remind that this is an

automatically generated model, and the state analysis took place after its construction. This ensures

that the resulting states are based only on the behavior information monitored and not on any system

administrator’s personal assumptions. The three observed states are:

• State 1: It is characterized by a low average network bandwidth (below 44 MB/s), mostly due

to network overload.

• State 2: It is characterized by a medium average network bandwidth (between 44 and 81 MB/s).

It seems to represent the medium load state of the grid.

• State 3: It is characterized by a high average network bandwidth (over 81 MB/s). This repre-

sents a barely loaded grid, where the network can be used at full capacity.
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From a service point of view, state 1 seems to be the most problematic, as low network bandwidth

can make the data input and output transfer times longer and therefore increase the job’s failure prob-

ability. State 3, on the other hand, seems like the best one, as the high network bandwidth guarantees

fast data transfers. State 2 certainly is in an intermediate point.

In order to increase dependability, FIRE needs a set of policies adapted to each state. In this case,

a set of job scheduling policies was configured, aimed to improve system’s dependability. To make

the example easier to understand, the chosen policies were very simple but still effective:

• Policy A gave a higher priority to jobs that had small input and output data. This reduces the

chances of job failure when the network is slow. This policy was configured for state 1.

• Policy B gave a higher priority to jobs that had large input and output data. This was specifically

designed to take advantage of times when network bandwidth is very high. The idea is to

execute the heavier jobs when their success chance was higher. Obviously this policy was

configured for state 3.

• Policy C dispatched jobs in strict arrival order (FCFS). It was configured for state 2.

8.2.2.2 Simulation results

Each scenario (20R, 50R and 100R) was simulated using the basic FCFS scheduling policy and

the special multi-policy scheduler controlled by FIRE. 16 simulations (each of them using different

random seeds) were performed for each scenario and scheduler system, giving a total number of 480

days of simulated time for each experiment (every execution simulated 30 days).

The average job failure rate results for each experiment can be seen in Figure 8.7, grouped by sce-

nario. As it has been said, the job failure rate for the FCFS configuration was fixed to 0.16, in order to

produce a value observed on a real grid environment (EGEE, in this case). The FIRE configuration,

as it can be seen, clearly reduces the job failure rate in every experiment.

A more detailed analysis is displayed in Figure 8.8. In this case, every scenario configuration

is displayed separately but, in each of them, separated failures rates are displayed for each state. It

is clear now that the state where most of job failures occur is state 1. The multi-policy based FIRE

configuration succeeded in lowering this state failure rate.

As a curious detail, it can also be seen in Figure 8.8 that the use of the multi-policy FIRE config-

uration very slightly increases the state 2 failure rate. Although this does not affect the overall result,
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Figure 8.7: Job failure rate for each scenario and policy configuration
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Figure 8.8: Job failure rate for each state in each experiment
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it is interesting to provide an explanation for this phenomena. It is important to remember that the

associated policy to state 1 (policy A) increases the small jobs priority, making them more likely to

be executed. In consequence, this makes that most small jobs are executed while this policy is active,

and when the system returns to state 2, the average job size in the queue could very posibly be higher.

Therefore the jobs executed during state 2 are generally bigger than in the FCFS configuration and

therefore their chance of failure is higher. This slightly increases state 2 failure rate. Even though,

this increase has little effect in the overall failure rate.
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Chapter 9

Grid global behavior prediction

Global behavior modeling has proved to be very useful in effectively managing grid complexity but, in

many cases, deeper knowledge is needed. GloBeM’s descriptive model could be greatly improved if

extended not only to explain behavior, but also to predict it. Grid management can benefit from global

behavior prediction, specially in areas such as fault tolerance or job scheduling. In this chapter a grid

global behavior prediction methodology based on GloBeM is presented. Its objective is to define the

techniques needed to create global behavior prediction models for grid systems. Experimental results

are also presented, obtained in real scenarios in order to provide a proper validation and illustrate the

benefits of this approach.

9.1 Predicting global behavior: Initial considerations and
a-priori study

GloBeM models provide very useful information about the system behavior, but they are strictly

descriptive in nature. They can be used to analyze, understand and optimize a grid, but they provide

very little knowledge about the system evolution over time and/or its future state. In order to further

increase their usefulness, GloBeM models could be combined with predictive techniques, capable of

foreseeing future events. This would enable the management system to act before such events ac-

tually occur, avoiding global faults or any other possibly dangerous situation and improving general

performance and/or dependability.
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In this chapter a set of algorithms are presented, designed to create global state prediction models

in terms of GloBeM behavior descriptions. They are based on machine learning and time series

analysis techniques. A set of basic elements can be distinguished in all of them:

• The set of grid states S = {s1, s2...sn}.

• The behavior model B(t) generated using the GloBeM methodology. It describes the grid

states S and the events that cause a transition from one state to another. At any instant t,

B(t) = sk | sk ∈ S, where sk is the grid state in that instant.

• The prediction model P (t) that predicts the futures states indicated by the behavior model. At

any instant t, P (t) = B(t+ 1).

• The training data. This is the historical grid monitoring data set used to create the behavior

and prediction models. It contains a log of values of the monitoring parameters used by the

behavior model in order to determine the current state and the associated global state.

• The test data. This is a different set of historical grid monitoring data. Although it is similar

to the training data, it is much larger and it is used to evaluate the prediction model accuracy.

In basic terms, given a set of current monitoring values, the behavior model indicates, among

other things, the current grid state, but it provides no information about the future. Given the same set

of values (and a history of past ones too) the prediction model will be able to predict the future state.

The accuracy of this prediction will depend on the quality of the training data and the algorithm used

to generate the prediction model. The test data is used to estimate this accuracy, based on two statistic

parameters of any given prediction model P (t):

• Average percentage of correct predictions, AC(P ).

• Average percentage of transitions correctly predicted, ACT (P ). This indicates how many ac-

tual state transitions were correctly anticipated by the prediction model.

The second value is important because it has been demonstrated that GloBeM’s models of these

environments tend to be very stable [MSV+10] (GloBeM hides the vast complexity of a large dis-

tributed system such as a grid) and state transitions represent major changes in the system behavior.

From a general perspective, predicting global state transitions could be the key to improve grid man-

agement in many areas (job scheduling, dependability and fault tolerance, etc). In most cases a change

of global state will require a change in the management policies, specially to prevent undesirable sit-

uations or states where some service requirements are not met (faults and/or failures, decreases in

quality of service, etc). A prediction model strongly benefits the management system in these critical

situations (transitions), making it possible to anticipate and act ahead of faults and changes. Naturally,

the best prediction models would score highly on AC(P ) and ACT (P ) values.
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9.1.1 A-priori study

In order to obtain a basic framework, an a-priori study was made. For this study real monitoring

data from PlanetLab [pla] were used. As already explained, Planetlab presents all the heterogeneity,

complexity and variability expected from any real grid computing infrastructure, and therefore it is

an excellent scenario for testing the global behavior prediction techniques presented here.

Again using the PlanetLab monitoring tool CoMon, many different parameters were monitored,

including CPU usage, memory usage, network traffic, architecture characteristics, I/O operations, an

so on. Information from this tool is being gathered in order to create a comprehensive monitoring

database of the historical evolution of PlanetLab. For this study a total of 8 months of PlanetLab

monitoring information from that database were used. Data was aggregated in 1 hour monitoring

intervals and divided in many subsets, in order to produce an extensive collection of training sets.

Subsets sizes ranged from 10 to 110 days, with different degrees of overlapping between them. Alto-

gether a set of 220 training subsets was created.

Using this training data set, different behavior models were produced in order to explain the be-

havior observed in the whole data set. Then, for each behavior model, statistics about percentage of

transitions and state stability were calculated.

Table 9.1: A-priori study results
mean standard deviation

Stable periods 90.1% 2.51
State transitions 9.9% 2.51

Stable period duration 18.28h 8.22

Summary values of the a-priori study are presented in Table 9.1. As can be seen, the average

number of state transitions is quite low (' 10%), which illustrates the previously stated idea that

GloBeM models are very stable, with few but relevant transitions. These transitions, however, are

crucial events, representing major changes in the system behavior that normally involve clear modi-

fications in aspects such as performance or dependability. From a management point of view, these

are the key situations that need to be anticipated, creating the need of a prediction model capable of

foreseeing state transitions.

Furthermore, as part of the a-priori study, a basic predictor was constructed, in order to provide a

basis for evaluation and comparison. This was called the naïve predictor.
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The naïve predictor

As the simple prediction model reference for the a-priori study, the naïve predictor PN (t) was

defined in the following terms:

PN (t) = B(t) (9.1)

This basically means that PN (t) will always predict the future state to be the current state, as

given by the behavior model. In consequence, the prediction will be correct as long as no state tran-

sition occurs. When the transition takes place, the PN (t) predictor fails, as it always expects the state

to remain stable.

The accuracy of this predictor-that-does-not-predict will obviously depend on the stability of the

system, as it only fails when transitions occur. A study of the AC(PN ) and ACT (PN ) values would

provide a basic frame of reference for prediction models evaluation, defining when predicting is ac-

tually better than a simple descriptive approach with no anticipation.

Table 9.2: Naïve predictor accuracy metrics
AC(PN ) 90.1%
ACT (PN ) 0.0%

Using the 220 PlanetLab monitoring training sets to generate different behavior models, the ac-

curacy of the naïve predictor was evaluated. Table 9.2 shows the predictor accuracy metrics for

PN (t). As it can be seen in table 9.2, even though it is incapable of predicting any transitions

(ACT (PN ) = 0%) the total average is very high (AC(PN ) ' 90%). This is consistent with the

statistical results presented in Table 9.1. The system is very stable with very few state transitions.

Nevertheless, detecting these transitions is our main objective, as these are the relevant events that

are identified and give meaning to the GloBeM behavior model. The naïve predictor is incapable of

doing that, but, even so, it is capable of correctly anticipating the future state 90% of the time. This is

worth keeping in mind when evaluating prediction models, because sometimes the best option could

be simply not to predict, and just use the PN (t) instead.

9.2 Global behavior predictors

As was explained, state transitions in GloBeM behavior models indicate crucial events in the sys-

tem, usually requiring the adaptation of global management policies. In this section two approaches

are presented to global state prediction, in order to anticipate future states and state transitions in a
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grid system. The first one is a basic, single variable prediction strategy, based on traditional time

series analysis techniques and machine learning. The second one is a far more complex, multi-stage

approach, introducing some advanced concepts.

9.2.1 Basic predictor

Considering the system’s global state as a variable, at a given time t B(t) = st | st ∈ S, and

therefore st−1 would be the state at time t−1, st−2 the state at time t−2, and so on. We can consider

the associated time series as:

St = {st, st−1, st−2, st−3, ...}

For any given instant in time t, St will contain the past and present state values of the system,

showing its historical evolution.

Using traditional time series analysis techniques, we define our basic predictor model as a function

capable of calculating the future state based on the present and past values of the global state time

series variable St:

PB(t) = f(st, st−1, st−2, st−3, ...) (9.2)

In practical terms, there is only so many instants in the past that can be considered and therefore

we redefine PB(t) as:

PB(t, w) = f(st, st−1, st−2, ..., st−w) (9.3)

where w is the number of past values considered in the prediction. We call w the predictor win-
dow.

The PB(t, w) algorithm consists of three distinct phases, aimed at creating a prediction model for

a GloBeM behavior model. These phases are illustrated in Figure 9.1 and described below:

1. Training data classification: Using the behavior model, the training data are classified, in

order to determine the state associated to each monitoring instant. The result is an extended

version of the training data set, including the state variable along with the monitoring parame-

ters.

2. Time series selection: The values from the state variable in the training data set are selected,

generating the St time series.
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3. Machine learning: Using a machine learning algorithm, a prediction model is trained using

data from the St time series. The number of past values the machine learning algorithm can

include in its calculations is determined by the w value defined above.

Training 
data

Classificator

Behavior 
model

Training 
data + state

Time series 
selection

St

Machine learning 
algorithm

Prediction 
model

- C45
- KNN
- Logistic regression
- MLP
- Naive Bayes

Figure 9.1: Basic predictor phases

The result is a prediction modelPB(t) for the St time series. The exact form of this model depends

on the machine learning algorithm used. At this point, instead of selecting one specific algorithm, we

have proposed the following set of them (see Section 4.3 for details):

• C4.5.

• K-Nearest Neighbors (KNN).

• Logistic regression.

• Multi-Layer Perceptron (MLP).

• Naïve Bayes.

Our objective is to provide an extensive set of machine learning algorithms, in order to present

a study as complete as possible. The five selected techniques are well known, widely used and

scientifically relevant. In Section 9.3, experimental results are presented to illustrate which machine

learning technique is more adequate in our case, and the overall performance of the basic predictor.
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9.2.2 Multi-stage predictor

After the basic predictor PB(t) was developed, the need of a more advanced prediction technique

appeared, motivated by several issues.

First, as shown in the a-priori study, the amount of state transitions observed in the GloBeM

models is quite low. Training data sets are composed mostly of data that represent stable instants

where no transition takes place. When this training data sets are used in machine learning algorithms,

they usually lead to prediction models that are over-fitted to predict stability and less concerned with

transitions. In situations where the disproportion among stable instants and transitions is extreme,

the machine learning algorithm basically disregards transitions, as they represent a very uncommon

situation. This could lead, in the end, back to a PN (t) naïve predictor.

Second, the behavior state variable (and its associated time series St) is clearly dependent on the

monitoring parameters, as it is derived from them by the GloBeM model. This information is not

included in the PB(t) model, which limits its efficiency.

In order to deal with these issues, a more complex predictor was developed. We consider again

the state time series St and the predictor window w. We incorporate also the set of monitoring

variables {V1, V2, ..., VM} selected by GloBeM (not all monitoring parameters but only the relevant

ones accoding to the global behavior analysis) and the associated time series for each one:

V 1t = {v1t, v1t−1, v1t−2, ...}

V 2t = {v2t, v2t−1, v2t−2, ...}

...

V Mt = {vmt, vmt−1, vmt−2, ...}

We define the predictor PM (t) as a function of the values of St, V 1t, ..., V Mt:

PM (t) = f(st, ...st−w, v1t, ...v1t−w, ...vmt, ...vmt−w) (9.4)

As can be seen, the first difference between PM (t) and the previous PB(t) is that the monitoring

parameters are also considered in the prediction, and not just the present and past state. In addition,

PM (t) improves the transition prediction accuracy by means of a multi-stage prediction process.

This process structure can be seen in Figure 9.2. The multi-stage predictor is composed of three basic

elements:

• The metapredictor MP (t) is a prediction model trained not to predict the future state but just

state transitions. It is capable of foreseeing whether the system is going to change state, but not

the specific state it is going to transit to.
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• The naïve predictor PN (t), as defined in Section 9.1.1, is used when the metapredictor indi-

cates that no transition is going to happen. This strongly simplifies the prediction process in

those cases, as no prediction is really made.

• The transition predictor PT (t) is a prediction model specifically trained to anticipate only

state transitions. It is trained using monitoring data only from instants in time when state

transitions happen, and therefore it is generated specifically for those situations. The transition

predictor is used when the metapredictor anticipates a transition, maximizing the probability of

correct prediction in those cases without affecting the general prediction accuracy.

As can be seen in Figure 9.2, the multi-stage predictor uses its metapredictor to determine if tran-

sitions are going to happen. In case a global state transition is anticipated, the multi-stage predictor

then relies on its transition predictor to determine the future state. In case no transition is foreseen,

the multi-stage predictor simply anticipates no change, providing the naïve predictor result as its final

prediction.

Metapredictor

Metapredictor 
model

Monitoring 
data

Possible 
transition 

predicted?

Transition predictor

Yes

Naïve predictor

No

Predicted 
state

transition 
predictor 

model

Figure 9.2: Multi-stage predictor

9.2.2.1 The metapredictor

The construction of the metapredictor model is carried out in four phases, as shown in Figure 9.3.

The process is similar in essence to the one previously described for the basic predictor, but more

complex. The four metapredictor model construction phases are:
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1. Training data classification: In the same way as for the PB(t) model, the training data are

classified using the behavior model, in order to determine the state associated to each monitor-

ing instant.

2. Time series selection: In this case not only the values from the state variable are selected, but

also the ones from the monitoring variables, creating the time series set {St, V 1t, ..., V Mt}.

3. Undersampling and attribute selection: In order to increase the quality of the time series

training set generated, two special refining techniques are used in this phase. These are under-

sampling and attribute selection and they are described in detail below.

4. Machine learning: Finally the machine learning algorithm is executed in this phase, in a sim-

ilar way as in the basic predictor. As in that previous case, we selected five possible algorithms

to be used: C4.5, KNN, logistic regression, MLP and Naïve Bayes.

Training 
data

Classificator

Behavior 
model

Training 
data + state

Time series 
selection

St
V1t ... VMt

Machine learning 
algorithm

Metapredictor 
model

 Undersampling + 
Attribute selection

Filtered 
time series

- C45
- KNN
- Logistic regression
- MLP
- Naive Bayes

Figure 9.3: Metapredictor model construction phases

Undersampling is a data filtering technique commonly used in machine learning procedures

where, given a classification of a training set, the proportions in which each class appears are clearly

uneven. In our case, if we divide the data set in stable instants and state transition instants, we find

out most of them belong to the first group. As was explained before, in these cases machine learning

algorithms tend to focus only on the majority class (stable instants, in our case), almost completely

ignoring the minorities. To avoid this phenomenon, the majority class is reduced to a statistically
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significant subset of values, representative of the whole group but of a size similar to the minority

groups (or at least not so overwhelmingly larger). This gives the machine learning technique a chance

to correctly identify all classes.

To achieve this we used the K-Means clustering algorithm [Mac67] (see Section 4.2.2). K-Means

classifies the given data in a specified number of classes, with similar observations assigned to the

same class. As a result, it produces a list of representative values, called centroids, one for each class.

To undersample the metapredictor training data set, the observations that represent stable instants

(much more frequent than the ones representing state transition instants) are firstly separated and then

classified using K-Means. The metapredictor algorithm sets a number of classes for the K-Means al-

gorithm to the number of state transitions observed, and takes the resulting centroids as representative

observations. This a widely used, generic undersampling methods, capable of providing satisfactory

results in may different data analysis problems.

A second training set optimization carried out in the metapredictor construction algorithm is at-

tribute selection. As shown in (9.4), the PM (t) model is defined from a function of many parameters,

basically the present and past values of the system’s global state and monitoring parameters, given

a certain predictor window w. When the number of monitoring parameters and w is high, this will

originate a function with a very large set of parameters. Not all these parameters are statistically

relevant for prediction purposes, but nevertheless they increase the training data set size, making the

subsequent machine learning process difficult.

In order to select only the statistically representative parameters for the machine learning process,

the metapredictor algorithm calculates the autocorrelation coefficients for each input time series.

Autocorrelation coefficients [Cha03] are a commonly used time series analysis tool. They indi-

cate the correlation (usually the Pearson correlation coefficient) between present and past values of

a time series, at any given time. For instance, a time series of a variable whose value at any time is

dependent only on its last two values will score closer to 1 in its two first autocorrelation coefficients

and close to 0 in the rest. Calculating these coefficients will indicate that no other past observations

are needed in order to predict the variable value.

In the metapredictor construction, the first w autocorrelation coefficients are calculated for each

time series used ({St, V 1t, ..., V Mt}). Then, only the relevant historical values of each series are

selected, effectively reducing the number of parameters provided to the machine learning algorithm.
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Finally, the machine learning algorithm is configured to generate a model that only predicts

whether the system global state is going to remain stable, or a transition will occur. The final model

produced is called the metapredictor model.

9.2.2.2 The transition predictor

The second part of the multi-stage predictor is the transition predictor PT (t). The construction of

this prediction model takes place in the following six phases, also shown in Figure 9.4:

1. Training data classification: In the same way as for the PB(t) andMP (t) models, the training

data are classified using the behavior model.

2. Time series selection: Like in the case of MP (t), the state and monitoring variables are se-

lected, creating the time series set {St, V 1t, ..., V Mt}.

3. Transition selection: At this point, the time series training set is filtered, in order to select only

values related to state transitions. This creates a data set containing only specific information

about global changes of state.

4. Time series differencing: The time series are differenced in order to remove from them any

trend or other unnecessary information that could affect the subsequent machine learning pro-

cess. This process is explained in detail below.

5. Attribute selection: In a similar way as in the case of MP (t), time series data set attributes

are selected using autocorrelation coefficients.

6. Machine learning: Finally the machine learning algorithm is executed in this phase, in a sim-

ilar way as in the previous predictors. Again we selected the same five possible algorithms to

be used: C4.5, KNN, logistic regression, MLP and Naïve Bayes.

Differencing is a commonly used time series analysis tool. Its objective is to eliminate any possi-

ble trend in the series, leaving only relevant information about changes in the variable. From a general

perspective, if we consider the time series Xt = {xt, xt−1, ...}, first order differencing Xt consists in

replacing it with a new series Yt defined as:

Yt = {yt, yt−1, ...} ∀yk ∈ Yt, yk = ∇xk = xk − xk−1

During construction of the transition predictor, first order differencing is applied to all numeric

series in the time series training data set in order to provide only useful information to the machine

learning algorithm.
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Figure 9.4: Transition predictor model construction phases

Once the six previously explained phases take place, the result obtained is a predictor model

specifically trained to detect global state transitions. When it is incorporated inside the multi-stage

predictor, it is only used when the metapredictor model indicates a transition will occur. The com-

bined use of PN (t), MP (t) and PT (t) carried out by the multi-stage predictor generates a more

efficient prediction model than PB(t), specially anticipating global state transitions. In the following

Section 9.3 an experimental study is presented, evaluating and comparing the different approaches.

9.3 Experimental results and evaluation

Using the same PlanetLab scenario described in the a-priori study (see Section 9.1.1), a series of

experimental tests were performed. The objective of these tests was to evaluate the accuracy of the

different prediction algorithms proposed, using the previously defined metrics AC(P ) and ACT (P ).

The general characteristics of the test series can be seen on Table 9.3.

As is presented on the table, several different predictor window values were used. Also training

sets of different sizes were included in the experiment series, in order to generate results that are as
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Table 9.3: Experiment characteristics
Total size of test data 8 months
Data time resolution 1 hour
Size of training data 60, 70, 80, 90 or 100 days

Total number of training models 100 (20 of each size)
Predictor window (w) 10, 20, 30, 40 or 50 hours

Total number of configurations 500

complete as possible. Each experiment was generated using a specific training set with a fixed w

value, giving a total number of 500 experimental configurations.

9.3.1 Basic predictor evaluation

The basic predictor PB(t) was evaluated using the experiment series previously described. Each

experiment was performed using the five machine learning algorithms considered (C4.5, KNN, Lo-

gistic regression, MLP and Naïve Bayes) and the AC(PB) and ACT (PB) values were calculated.
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Figure 9.5: Basic predictor results

Figure 9.5 shows the average results obtained, separated by machine learning algorithm used.

The issues previously anticipated in Section 9.2.2 can be clearly seen here, causing a reduction in the

predictor accuracy. The AC(PB) value ranges between 55% and 62% and the ACT (PB) between

20% and 25%. Even though the predictor is capable of anticipating a few transitions, the total and

transition accuracy is too low to be considered acceptable. This results clearly justify the need for a
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more complex approach.

9.3.2 Multi-stage predictor evaluation

In a similar fashion to the basic predictor, the multi-stage predictor was evaluated, using the five

suggested machine learning algorithms. In this case the two stages have to be considered (metapre-

dictor and transition predictor) and evaluated separately, before calculating the overall accuracy of

the multi-stage predictor.
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Figure 9.6: Metapredictor results

Figure 9.6 shows the average results obtained for the metapredictor. It is important to remember

that this model does not predict the future global state itself, but just determines whether a transition

is going to happen or not. Therefore the AC(MP ) and ACT (MP ) values have to be understood

accordingly.

The histogram shows that not all machine learning algorithms are equally capable of generating

good metapredictor models. The total average value AC(MP ) is generally very good (between 80%

and 94%) but the ACT (MP ) values are uneven. KNN turns out to be the only machine learning

algorithm capable of producing models with fairly good values in both AC(MP ) and ACT (MP )

metrics. These results strengthen the idea that state transitions are a very rare, difficult to predict

event. Providing some capabilities to anticipate them is an extremely complicated task, even with the

appropriate combination of tools.
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Figure 9.7: Transition predictor results

The evaluation of the transition predictor was performed in a similar way, and the results are

summarized in Figure 9.7. AC(PT ) and ACT (PT ) metrics are displayed, even though only the latter

is interesting in this case. It is important to remember that this is a prediction model specifically

designed to be used only when transitions are anticipated, and therefore it is adapted only to those

events. The histogram shows an improvement in the ACT metric if compared to its previous values

for the PB(t) andMP (t) models, but not in the cases of all machine learning algorithms. This further

strengthens the idea that state transitions are very difficult to predict, because even specialized models

are not always good at detecting them. Even so, the C4.5, KNN and Naïve Bayes algorithms produce

fairly good results (62%, 71% and 67% respectively) that can be used inside the multi-stage predictor.

The metapredictor and transition predictor evaluations just described show that KNN is the ma-

chine learning algorithm that produces better results in both cases. Using this algorithm, the multi-

stage predictor was constructed and evaluated using the previously described experiment series. The

summarized results can be found in Table 9.4.

Table 9.4: Multi-stage predictor results (KNN)
AC(PM ) 87.61%
ACT (PM ) 62.5%
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The final multi-stage predictor achieves a very high total average of correct predictions, which

guarantees its overall accuracy. Plus, it is capable of correctly anticipating almost two thirds of the

global state transitions, which is a fairly good value, given the intrinsic difficulty of anticipating this

rare but critical events.
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Figure 9.8: Compared predictor results

Finally, Figure 9.8 shows a general comparison of the simplistic naïve predictor and the two pre-

diction algorithms presented in this chapter (the KNN results have been selected in the case of the

basic predictor). As a curious detail, the naïve predictor gets the highest AC value (90.1%), even

higher than the multi-stage approach (87.61%). This small difference is regarded as not significant,

specially when the ACT metric is included in the comparison. Given the explained importance of

global state transitions in terms of grid management, the improvement shown by the multi-stage pre-

dictor in this area (62.5% of correctly anticipated transitions) clearly makes it the best approach for

global state prediction.
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Chapter 10

Conclusions

The work presented in this Ph.D. thesis has successfully fulfilled the objectives defined at the begin-

ning of this document (Section 1.2). These accomplishments clearly validate the initial hypothesis,

allowing to state that a high-level, global, unified and service-oriented model of the grid behavior
can benefit its management, improving its autonomic capabilities and providing the necessary
abstraction to make single-entity vision possible. In this chapter the most relevant conclusions of

this work will be summarized, emphasizing the most important achievements.

10.1 System behavior analysis

One of the main contributions of this Ph.D. thesis is the GloBeM methodology (Chapters 5 to

7). GloBeM combines monitoring techniques and performance metrics with advanced data mining

and other knowledge discovery techniques in order to analyze and model the behavior of a large

scale distributed system (a grid, in this case). The methodology is designed to produce a service-

level, global representation of the system’s total state, focusing on an innovative single entity vision.

This is, so far, one of the few attempts to model the whole grid behavior in such way, and the only

one based on real, monitored performance information and not on theoretical models and generic

approaches. GloBeM makes no initial assumptions and simply models what is observed, simplifying

the subsequent analysis and optimization. The main advantages of this approach are:

• The model which is built by means of GloBeM’s methodology can be easily interpreted by a

system manager or administrator.
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• The model characteristics simplifies its use within management tools in order to improve the

performance of the grid.

• The model is built in an autonomous way. No human interaction is required.

Additionally, GloBeM has been designed as a modular and flexible process. This methodology

is more than a closed approach, easily allowing future improvements and adaptations. New knowl-

edge discovery techniques can be incorporated, complementing or replacing the existing ones, other

monitoring techniques can also be integrated, etc. Also, the methodology can be easily adapted to

other kinds of systems, not limiting itself to grid infrastructures. Other platforms such as clusters or

supercomputers could probably benefit from global behavior analysis, in a similar way the grid does.

Chapter 7 describes two use cases (Section 7.2), one in a simulated scenario and another one in a

real scenario. An understandable model has been found in both cases. The stability of the models has

also been proven. Furthermore, some examples of application of the model have been also shown,

emphasizing the importance of this initiative.

Finally, Chapter 9 presents an important extension to the GloBeM model, incorporating behavior

prediction capabilities, anticipating crucial changes in system behavior. As was explained in Section

9.1, the process of predicting these crucial changes is not an easy task, since grid systems behave in a

stable way, from a global modeling perspective. Given the stability of behavior models, transitions or

behavior changes rarely occur and, therefore, are difficult to predict. This makes any basic statistical

predictor incapable of finding such changes. The multi-stage predictor proposed in Section 9.2.2 is

capable of predicting a high percentage of these transitions, as well as being able to recognize the

system stability, as described in Section 9.3. Consequently, the prediction proposed can significantly

benefit grid management systems, enabling one to act ahead of system changes and to select suitable

management policies to deal with those changes before they occur.

10.2 Grid single entity vision

Also a major contribution of this Ph.D. thesis is the abstraction mechanism that makes the single

entity vision of the grid finally possible. This is particularly important from a theoretical perspective,

since it answers one of the basic question that raised when developing the initial hypothesis and mo-

tivations of this work: Is the grid really a single system? if it is, can it be studied, not only in
abstract form, but more practically as a single entity?.

The new single entity abstraction presented in this thesis clarifies these questions, providing a
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solid, useful representation of the whole grid behavior that can be used for analysis, modeling and

management purposes. It is also a service-level vision, modeling the system’s total state as an ex-

tended finite state machine. This provides a familiar representation of the grid operation, simplifying

the model’s use and revealing only relevant aspects of both system’s structure and function.

10.3 Global autonomic management

GloBeM provides the necessary methodology to create a single entity behavior model of the grid.

This is an important theoretical achievement but its practical scientific relevance is proven only when

its usefulness as an analysis and management tool is demonstrated. The implications that this single

entity, service-level model can have in autonomic system management are studied in Chapters 5 and

6, but is in Chapter 8 where its benefits are fully displayed in several experimental scenarios.

Section 8.1 shows how a general grid problem (storage services quality) can be addressed using

global behavior modeling. The massively parallel data accesses issued by grid applications place a

heavy burden on the storage service which has to react efficiently. To improve the quality of service

provided by the storage service, it is required to reason about its behavior in order to identify potential

bottlenecks. However, the complexity of the system’s behavior makes this problem difficult. A lot

of different factors affect the behavior simultaneously: highly-concurrent data access patterns, long

periods of service uptime, failures of physical components, the highly distributed nature of the storage

service itself, etc.

GloBeM’s models allow us to analyze and model the behavior of the grid’s storage service, pro-

viding the necessary clues to develop efficient performance improvements and eliminate possible

bottlenecks. The benefits of this approach are clear, obtaining improvements in service bandwidth

both in amount and stability, as the experiments shown in Section 8.1.3.2. It is specially important

to remember the benefits of improving the bandwidth stability: a higher quality of service at this

level makes the cost of access operations more predictable, improves the efficiency of scheduling al-

gorithms used by data-intensive processing frameworks and helps optimizing the overall application

throughput. These series of experiments are a very clear, descriptive example of how global behavior

modeling can contribute to grid autonomic management, enabling to introduce self-optimizing capa-

bilities.

In Section 8.2 the contribution to system autonomic management is extended, presenting FIRE,

an autonomic framework for system management based on global behavior modeling. FIRE is a

general purpose management software that provides a basic infrastructure for building grid autonomic
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systems based on the single entity vision presented in this thesis central hypothesis. Its usefulness

is also illustrated with an experimental scenario, focused in this case on self-healing related issues.

This approach provides fault tolerance based on a global behavior model generated by GloBeM. On

the one hand, the use of GloBeM simplifies the decision making tasks over the system. On the other

hand, the FIRE framework enables the proper application of management policies, as Section 8.2.2

shows. Consequently, this improves significantly the system’s dependability.
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Chapter 11

Future work

The work presented in this Ph.D. thesis addresses the areas of grid behavior modeling and autonomic

management. It satisfactory fulfills the initial objectives and hypothesis presented in Chapter 1, ex-

ceeding its original expectations and producing results of scientific relevance. However, a series of

further improvements and new experimentation and analysis could be considered as new research

initiatives, inspired by this work.

In this chapter, some of the most relevant future lines and open issues at the end of this work will

be enumerated. Some of them deal with the addition of new techniques, whereas others are related

to the inclusion of new structural variations in the GloBeM+FIRE framework. The application of the

proposed methodology to new problems is always a good idea, as well as the implementation of new

quality and analysis measures. The most relevant of these alternatives are described in the following

sections.

11.1 Behavior prediction extension and further valida-
tion

The basic GloBeM’s single entity abstraction is extended in Chapter 9 to incorporate prediction

capabilities. This turns the initial descriptive model, which represents the observed behavior, high-

lighting important aspects and relevant events, into a predictive model, capable also of foreseeing
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system changes before they occur. The experimental results presented in Section 9.3 focus on the

statistical properties of the different prediction models shown, describing different options depending

on the grid characteristics and the knowledge discovery techniques in use. Following this line of

research, several aspects lie open for further study:

• Studying new knowledge discovery techniques, developing comparative studies that show ways

to improve the predictor’s performance.

• Extend the actual prediction models, in order to incorporate more advanced time series analysis

elements.

11.2 Global behavior modeling of other distributed sys-
tems

The global behavior methodology presented was originally designed for the grid, but could be

easily adapted to model other distributed infrastructures. This application coud benefit these other

systems, in a similar way GloBeM’s vison benefits the grid. However, some minor adjustements

might be required, due to the evident structural diferences. The most relevant alternatives are:

11.2.1 Clusters

Although clusters are typically much less complex than grids, with dedicated resources and high

performance, dependable networks, global behavior modeling could help to model its performance

and enrich the single system image that, up to a certain level, most of them provide. This is specially

relevant in big infrastructures (such as most TOP500 computers [TSS]), where the large amount of

nodes (hundredths or even thousands) increases complexity enormously, making system’s much less

predictable and manageable.

11.2.2 Clouds

The service-oriented nature of these systems make them close relatives of the grid, sharing some

of its most important characteristics. The single entity, service-level behavior model generated by

GloBeM can be used in clouds in a similar way it is used on grids, providing insight on the system

performance and clues to improve its dependability and quality of service.
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11.3 Creation of super-grid infrastructures

Maybe one of the most interesting applications of GloBeM’s single entity vision of the grid is to

help creating higher level structures (the name super-grid is used here only as a suggested possibil-

ity), capable of integrating different grids. The single entity vision enables to regard each grid as an

unique, independent resource, developing orchestrating mechanisms capable of integrate all services

provided by different grids. There has already been some research in this area [DdABV08], but there

are still many posibilities to explore.

Adittionally, if this idea is combined with the previous one, presented in Section 11.2 (modeling

other distributed systems), GloBeM could provide a unfied vision for several different distributed

systems, including grids, clusters and clouds. Fully regarding these systems as single entities allows

to easily combine them, creating these super-grids. Without global behavior modeling and single

entity abstraction creating a super-structure like that would be extremely complicated, due not only

to technical issues but also to global vision and unified management problems.

11.4 Application of GloBeM’s analysis methodology to other
fields

Although GloBeM has been designed as a distributed systems behavior analysis methodology,

it is possible to adapt it (or some part of it) to other scientific fields. The core of GloBeM is a

powerful information analysis and knowledge extraction mechanism, and these features can be put to

use in other research areas. In most cases the characteristics of the scientific problem involved would

require an adaptation of GloBeM methodology to some extent, to fit these specifics. These are a

few examples of other possible uses of the GloBeM’s analysis methodology, selected for its scientific

relevance:

• Behavior analysis of complex biological systems, specially in the fields of bioinformatics and

neuroscience. These systems, such as natural neural networks, can be observed and analyzed,

acording to several biological parameters. These parameters can be used as a basis for global

behavior modeling, trying to extract general patterns and discover advanced interactions among

large numbers of interconnected cells. The CesViMa research group has previous experience

in this field, as a part of the Cajal Blue Brain Project [cbb, Mar06].

• Also in the field of neuroscience, GloBeM analysis methodology could be benefitial in the prob-

lem of neuron classification [RyC99, CPT+00]. The abstraction capability of GloBeM could

be adapted to find hidden relations between cells, in a similar way it is capable of identifying

Jesús Montes Sánchez GLOBAL BEHAVIOR MODELING: A NEW APPROACH TO GRID AUTONOMIC MANAGEMENT



160 CHAPTER 11. FUTURE WORK

grid states.

• Contribution to improve advanced scientific visualization tecniques. The GloBeM method-

ology could be adapted to be used to enrich complex information representation techniques,

providing information abstraction and highlighting the most relevant aspects of the represented

data. These enriched representation could be used in many scientific problems, such as diverse

statistical analyses and other scientific areas such as complex phisics, fluid mechanics or the

above mentioned bioinformatics and neuroscience.

• In the area of optimization problems and, more specifically, in the complex sub-field of algo-

rithm hybridization [Tal02], the GloBeM analysis methodology could be adapted to study the

resulting hybridization patterns and to develop new combination techniques. GloBeM helps

to analyze the grid evolution and to create advanced autonomic management mechanisms. In

the same way, it could help to understand how the hybridization process works and to provide

insight on how to develop improved hybrid algorithms.
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Detailed architecture of FIRE
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Figure A.1: Architecture of FIRE

In Section 8.2 the FIRE autonomic management framework was introduced. Although a detailed

description of its features and functionalities was presented (both theoretical and practical), the sys-

tem’s architecture was only briefly summarized. In this Appendix FIRE architecture is discussed in

detail, thoroughly describing its design and operation. Figure A.1 shows a general overview of the

system, including all relevant modules. Each of them is going to be described in detail below.
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A.1 Event Channel

FIRE’s architecture is organized around a standard event channel. This software design technique

allows to construct a very modular system, in which several different elements gather together. Com-

munication between these modules takes place through this event channel, in the form of specific

event notification messages to which modules can subscribe. These messages provide information

about specific situations, and can be created by the modules to fit their specific needs and functional-

ities.

At any given time, any module connected to the event channel can perform three basic operations:

• Subscribe to an event: This indicates that the module is interested in that specific event. From

that moment it will receive messages whenever that event is notified.

• Unsubscribe to an event: The opposite operation to the first one. It cancels the module sub-

scription to the event, so no new notification messages will be received.

• Publish an event notification: The module notifies the occurrence of an event to the system.

All modules subscribed to that specific event will receive an event notification message.

FIRE’s management capabilities are based on GloBeM’s behavior models. As described in Chap-

ter 7, these models are presented in the form of a finite state machine (FSM), that can be understood

in the following terms:

• States represent different cases of identified behavior, according to certain characteristics.

• Transitions between states represent events on that make the system’s behavior change, moving

from one state to another. Detecting these transitions plays a very important role in autonomic

management, because it indicates behavior changes that might be relevant to the system’s per-

formance and functionalities.

From this perspective it seems fitting to adopt an event-driven approach, like the one provided by

an event channel. In order to provide autonomic features FIRE must also incorporate the necessary

modules to identify, analyze and make decisions based on the system’s behavior FSM model.

A.2 Status Manager

The Status Manager is the first FIRE module. Its mission is to monitor the system’s behavior

and interpret it in terms of the GloBeM’s FSM. Its basic functions are:
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Table A.1: Status Manager events
Event Role Description
State Request Subscriber Indicates that a module has requested to know the

current grid state.
Current State Publisher This event message contains information about the

system’s current state and monitoring values.
State Transition Publisher Notifies an system’s state transition, indicating the

new state and transition conditions.

• It uses monitoring information provided by the grid sensors to calculate the system’s state

according to the FSM model. Normally this information is provided by GMonE, but other grid

monitoring tools could be adapted to be used in its place.

• Using the event channel, it can inform of the system’s current state and detailed monitoring

values.

• It detects state transitions and notifies them sending event notification messages into the event

channel.

Table A.1 shows the events subscribed to and published by the Status Manager.

A.3 Policy Manager

The second FIRE module is called the Policy Manager. This module’s main purpose is to provide

self-adaptive autonomic capabilities to the grid’s management system, by automatically selecting a set

of compatible management policies for each case. As can be seen in Figure 8.5, the Policy Manager

is directly connected with the grid’s management system, and it is capable of automatically changing

its configuration in order to autonomically adapt to the system’s behavior changes. This is done by se-

lecting the appropriate management policy for each situation (normally each state of the FSM model).

If we consider data replica allocation on a Data Grid, for instance, several different allocation

policies could be used, depending on the system state. Some polices could be optimal when the net-

work connections are heavy loaded, others when the CPU usage is very unbalanced, etc. Dynamically

selecting the adequate replica allocation policy for each state would strongly improve the overall sys-

tem’s performance (assuming that all policies are compatible among themselves).

Therefore, the Policy Manager main functions are:
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Table A.2: Policy Manager events
Event Role Description
State Request Publisher Indicates that the Policy manager has requested to

know the current grid state.
Current State Subscriber This event message contains information about the

system’s current state and monitoring values.
State Transition Subscriber Notifies an system’s state transition, indicating the

new state and transition conditions.

• It contains knowledge about the FSM behavior model, the management policies available and

which is more adequate for each state.

• With the help of the Status Manager, it detects behavior changes in the grid and selects the ap-

propriate management policy in each situation, so it can be applied by the management system.

The knowledge about the policies available, the FSM behavior model and the correct combination

of policies and states have to be provided to the Policy Manager in an initial setup phase. The FSM

model and policies have to be studied prior to the use of FIRE (normally by a human expert) and the

correct configuration has to be created and introduced in the Policy Manager. After this setup stage

the system can be completely autonomous, not needing any external intervention or system adminis-

tration supervision.

Table A.2 shows the events subscribed to and published by the Status Manager.

A.4 Other events and modules

The extensibility and flexibility of the event channel architecture allows the inclusion of custom

modules and events, represented in figure 8.5 by generic modules X and Y. The specific nature of a

grid system where FIRE would be deployed could make necessary to incorporate new functionalities.

FIRE has been designed with this in mind and, therefore, it could be easily accomplished.

In the above mentioned data grid example, for instance, it could be necessary to incorporate infor-

mation about location of the replicas, load distribution and so on. If that could not be accomplished

through the monitoring system (which provides information to the Status Manager), a new module

an a set of events could be easily implemented and integrated in FIRE. In the same way the Policy

Manager could be very simply customized to subscribe to the new necessary events and take that

information into account when making decisions.
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