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Abstract

Due to the increase of huge data volumes, a new parallel computing paradigm to
process big data in an efficient way has arisen. Many of these systems, called data-
intensive computing systems, follow the Google MapReduce programming model.
The main advantage of these systems is based on the idea of sending the computation
where the data resides, trying to provide scalability and efficiency.

In failure-free scenarios, these frameworks usually achieve good results. However,
these ones are not realistic scenarios. Consequently, these frameworks exhibit some
fault tolerance and dependability techniques as built-in features. On the other hand,
dependability improvements are known to imply additional resource costs. This is
reasonable and providers offering these infrastructures are aware of this. Nevertheless,
not all the approaches provide the same tradeoff between fault tolerant capabilities
(or more generally, reliability capabilities) and cost.

In this thesis, we have addressed the coexistence between reliability and resource
efficiency in MapReduce-based systems, looking for methodologies that introduce the
minimal cost and guarantee an appropriate level of reliability. In order to achieve
this, we have proposed: (i) a formalization of a failure detector abstraction; (ii) an
alternative solution to single points of failure of these frameworks, and finally (iii) a
novel feedback-based resource allocation system at the container level.

Finally, our generic contributions have been instantiated for the Hadoop YARN
architecture, which is the state-of-the-art framework in the data-intensive comput-
ing systems community nowadays. The thesis demonstrates how all our approaches
outperform Hadoop YARN in terms of reliability and resource efficiency.
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Resumen
Debido al gran incremento de datos digitales que ha tenido lugar en los últimos
años, ha surgido un nuevo paradigma de computación paralela para el procesamiento
eficiente de grandes volúmenes de datos. Muchos de los sistemas basados en este
paradigma, también llamados sistemas de computación intensiva de datos, siguen el
modelo de programación de Google MapReduce. La principal ventaja de los sistemas
MapReduce es que se basan en la idea de enviar la computación donde residen los
datos, tratando de proporcionar escalabilidad y eficiencia.

En escenarios libres de fallo, estos sistemas generalmente logran buenos resulta-
dos. Sin embargo, la mayoría de escenarios donde se utilizan, se caracterizan por
la existencia de fallos. Por tanto, estas plataformas suelen incorporar características
de tolerancia a fallos y fiabilidad. Por otro lado, es reconocido que las mejoras en
confiabilidad vienen asociadas a costes adicionales en recursos. Esto es razonable
y los proveedores que ofrecen este tipo de infraestructuras son conscientes de ello.
No obstante, no todos los enfoques proporcionan la misma solución de compromiso
entre las capacidades de tolerancia a fallo (o de manera general, las capacidades de
fiabilidad) y su coste.

Esta tesis ha tratado la problemática de la coexistencia entre fiabilidad y eficiencia
de los recursos en los sistemas basados en el paradigma MapReduce, a través de
metodologías que introducen el mínimo coste, garantizando un nivel adecuado de
fiabilidad. Para lograr esto, se ha propuesto: (i) la formalización de una abstracción
de detección de fallos; (ii) una solución alternativa a los puntos únicos de fallo de estas
plataformas, y, finalmente, (iii) un nuevo sistema de asignación de recursos basado
en retroalimentación a nivel de contenedores.

Estas contribuciones genéricas han sido evaluadas tomando como referencia la
arquitectura Hadoop YARN, que, hoy en día, es la plataforma de referencia en la
comunidad de los sistemas de computación intensiva de datos. En la tesis se demues-
tra cómo todas las contribuciones de la misma superan a Hadoop YARN tanto en
fiabilidad como en eficiencia de los recursos utilizados.
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Introduction





Chapter 1

Introduction

This chapter gives an overall description of the PhD thesis. First of all, we describe
the motivation and context in which the thesis has been developed. Then, we define
the problem addressed by this thesis, which is primarily fault-tolerant oriented. After
that, we show the main objectives and the contributions derived from these objectives.
In the next section we state the delimitations of the thesis, that is, the related issues
that are out of its scope. Then, we describe the research methodology used in the
thesis. Finally, we outline the rest of the thesis chapters.

1.1 Motivation
This thesis started as part of the Marie Curie Initial Training Network (MCITN)
“SCALing by means of Ubiquitous Storage (SCALUS)” which aimed at elevating
education, research, and development inside the storage area with a focus on cluster,
grid, and cloud storage [94]. Arguing that the fault tolerance, due to its complexity,
was an issue that had not been properly addressed in large-scale storage systems, this
thesis focused on the development of strategies for providing enhanced fault tolerance
capabilities to these distributed systems.

Due to the increase of huge data volumes, the computing systems community
developed a new parallel computing paradigm to process big data in an efficient way.
Data-intensive processing frameworks were arisen, taking Google’s MapReduce [42]
an important role, since it become the leading programming model. This framework
and its alike models have covered many gaps from data processing requirements.
However, after an exhaustive analysis, we concluded that fault-tolerance, although
considered the strong side of these frameworks due to its fine-grain nature, can be
enhanced and optimized.

1.2 Problem definition
The ever growing size of data (i.e., Big Data) has motivated the development of
data intensive processing frameworks and tools. In this context, MapReduce [42] has
become a relevant framework for Big Data processing in the clouds, thanks to its
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remarkable features including simplicity, fault tolerance, and scalability. The popular
open source implementation of MapReduce, Hadoop [11], was developed primarily by
Yahoo!, where it processes hundreds of Terabytes of data on at least 10,000 cores,
and is now used by other companies, including Facebook, Amazon, Last.fm, and the
New York Times [10].

Undoubtedly, failure is a part of everyday life, especially in current data-centers
which comprise thousands of commodity hardware and software [32, 84, 88]. Con-
sequently, MapReduce was designed with hardware failure in mind. In particular,
Hadoop tolerates machine failures (crash failures) by re-executing all the tasks of the
failed machine by the virtue of data replication. Furthermore, in order to mask tem-
porary failures caused by network or machine overload (timing failure) where some
tasks are performing relatively slower than other tasks, Hadoop re-launches other
copies of these tasks on other machines.

Foreseeing MapReduce usage in the next generation Internet [78], a particular
concern is the aim of improving the MapReduce’s reliability by providing better
fault tolerance mechanisms. While the handling and recovery in MapReduce fault-
tolerance via data replication and task re-execution seem to work well even at large
scale [68, 14, 115], there is relatively little work on detecting failures in MapReduce.
Accurate detection of failures is as important as failures recovery, in order to improve
applications latencies and minimize resource waste. A new methodology to adap-
tively tune the timeout detector can significantly improve the overall performance of
the applications, regardless of their execution environment. Every MapReduce job
should have its proper timeout, because in this way it could be possible to efficiently
detect failures. Due to this, we raise the following research question:

Research question 1. Is it possible to formalize a failure detector abstraction in
order to model the timing assumptions in MapReduce-based systems?

Apart from the enhancement of the timeout, a major issue of the MapReduce
environments is its dependence on daemons, which can become single points of failure.
For instance, this is the case of the master. Every MapReduce execution is based on
a special node, called master. The rest of the nodes are called workers. In Hadoop
MapReduce 1.0, the master node, also called JobTracker, has special relevance in a
MapReduce framework, since it is in charge of keeping several data structures, like
the state and the identity of the worker nodes. The master node is also responsible for
scheduling the tasks of a job, distribute these tasks among the workers, monitoring
the tasks and re-executing them, if it is needed.

In the first version of the Hadoop MapReduce framework, the master was a single
point of failure [22]. In order to enhance the reliability of this framework, a new
architecture was proposed, YARN [101]. This project states that Hadoop YARN is
only a resource management platform, that among other features provides greater
scalability, higher efficiency and enables different frameworks to efficiently share a
cluster [101]. In other words, this means that MapReduce is only one of the frame-
works that run on top of YARN. While getting rid of the single JobTracker for all
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the jobs, now each job has its own JobTracker, placed in the cluster as any other
TaskTracker. However, the problem of a single point of failure is not solved, since a
JobTracker has become a single point of failure for a particular job, which in some
scenarios could also be important.

We think that it is possible to increase the reliability of YARN, and particularly the
reliability of masters in YARN by means of a novel approach that goes beyond existing
state-of-the-art approaches, such as standby masters and periodical checkpointing.
Due to this, we raise the following research question:

Research question 2. Is it possible to extend or re-design the failure handling
model for MapReduce single point of failure, a model that goes beyond existing
methodologies?

When reliability is improved, it is reasonable to think that these improvements are
made at the expense of additional resource consumption. For instance, the replication
improves the reliability, but increases the cost, regardless of the kind of replicated
data, final, intermediate or hotspot data. The same occurs with cloning or speculating
a task, which implies the increase of the resource cost. It is very difficult to improve
reliability and maintain the same resource utilization. Due to this, we raise the final
question:

Research question 3. Can MapReduce reliability be improved by considering the
minimal cost increase, by not increasing the cost at all, or even decreasing it?

This thesis is focused on answering these three research questions, which revolve
around the reliability and resource efficiency of MapReduce systems.

1.3 Objectives

The previous research questions can be transformed into objectives to be achieved
by this thesis. Namely, the four goals of this thesis, and at the same time, their four
contributions, are:

• Analysis of the failure detection drawbacks and other fault-tolerant bottlenecks
in MapReduce-based systems that could be object of improvement. Regarding
this, we have (i) statistically and experimentally analyzed the failure detector
shortcomings in different MapReduce workloads; (ii) we have shown that failure
handling on single points of failure is still deficient in large-scale environments,
and (iii) we have proven that data-intensive frameworks are not able to effi-
ciently re-distribute resources at container level.

• Led by the Research question 1, we aim to formalize a failure detector ab-
straction for MapReduce-based systems, by introducing alternative timeouts,
different from the default and static timeout of current frameworks. Regarding
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this, initially (i) we propose the high relax failure detector (HR-FD), which rep-
resents a static timeout as alternative to the default timeout. This algorithm is
able to estimate a completion time of the user workload, and adjust a unique
timeout for it. This static adjustment is particularly efficient for small workload
requests, since most of the user request of production clouds run these respec-
tive requests. Second, (ii) we propose medium relax failure detector (MR-FD),
which represents the fundamental module behind our dynamic timeout service.
The advantage of this module consists in its ability to change the timeout with
respect to the progress score of each user workload; as long as the user workload
comes into the finish state, the timeout gets smaller, in order not to harm the
completion time performance. Finally, (iii) we propose the low relax failure de-
tector (LR-FD), which is able to intersect the MapReduce dynamic timeout with
an external monitoring system, which enforces more accurate failure detections.
This last module is particularly important for some of the user requests which
are strictly deadline-bounded, by consisting of higher accuracy requirements.

• Led by the Research question 2, we aim to formalize an alternative, but gen-
eral failure handling model for any MapReduce-based single point of failure.
Regarding this, we have proposed a novel failure handling framework, called
Diarchy. Diarchy differs from classical and costly standby and checkpointing
methodologies. Its principal aim is to enhance the MapReduce reliability, by
means of the sharing of responsibilities between two master peers. Apart from
the main Diarchy algorithm, we instantiate a case study with respect to its
functioning, and experimentally address the application master single point of
failure within Hadoop YARN.

• Led by the Research question 3, we aim to formalize an alternative and opti-
mized resource allocation model for MapReduce-based systems, which is capable
of adjusting proper containers for any workload request. Containers represent
an encapsulation of a subset of computing resources, placed on a single node of a
cluster. They are becoming the de facto standard as resource allocation facility.
However, their current static configuration leaves huge room for improvement.
Regarding this, we propose AdaptCont, a feedback system based approach,
which is in charge of selecting the right amount of resources for any container
request. This selection is dependent on many parameters, among others, the
real-time request input, the number of requests, the number of users and the
dynamic constraints of the system infrastructure, such as the set of resources
available. AdaptCont can function in two modes, Dynamic AdaptCont and Pool
AdaptCont. Unlike Dynamic AdaptCont, which calculates the exact amount of
resources per each container, Pool AdaptCont chooses a predefined container
from a pool of available configurations. In addition, we instantiate AdaptCont
for a particular case study, the application master container of Hadoop YARN.
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1.4 Delimitations

This thesis belongs to the area of data-intensive frameworks, a parallel computing
paradigm that has grown in the last decade, due to the increase of huge data volumes.
Although these frameworks are known as workhorses of the current production clouds,
our contributions go beyond these specific infrastructure environments and can be
applied to other infrastructures, such as clusters, grids or clouds.

All the thesis contributions try to improve the fault-tolerance mechanisms of these
frameworks, with a reasonable resource efficiency. Regarding fault tolerance, we have
addressed crash-stop and omission failures. Arbitrary (byzantine) failures, network
failures, and security failures are out of the scope of the thesis.

On the cloud computing context, especially in scenarios where a user or a provider
needs to access data, it is likely that privacy and security issues appear. Apart from
ensuring high availability and reliability, privacy and security are considered first-class
citizens of these environments. Nevertheless, these topics are also out of the scope of
this thesis.

1.5 Methodology

In the early phase of this doctoral thesis, we have followed an exploratory research
methodology. In other words, the research objectives of the thesis were not known
beforehand, but extracted from the study of the state of the art through different
research iterations.

Initially, the first scientific iteration was originated from the goal of enabling a
High-performance, Secure and Fault Tolerant Grid File System. With respect to this
issue, we systematically surveyed most of the literature in this direction, and identified
the first set of problems which have not been solved yet.

The shift from grid to cloud environments motivated the second research itera-
tion. In this second stage, we focused on a particular cloud-based framework, i.e.,
data-intensive computing systems. Concretely, we concentrated on the performance
drawbacks of MapReduce-based systems when they are exposed to failures.

The third iteration constituted the definition of the first contribution of the thesis,
derived from the identification of the necessity of a formal failure detector abstrac-
tion model within MapReduce-based systems. Regarding this first contribution, we
applied a method based on modeling the system before formalizing the failure detec-
tor abstractions. As a result of this iteration, we developed three algorithms, which
were evaluated by means of two metrics: the correctness and the performance of
the mechanisms. The first metric evaluation is decomposed in the assessment of two
other additional metrics: completeness and accuracy. The performance is evaluated
by means of simulation.

In this stage, we identified the other two research problems. The second problem
dug into the issue of single points of failure, present in MapReduce-based systems.
For this contribution we made a statistical analysis of the impact of a single point
of failure in MapReduce. Then, we defined an algorithm, which was again evaluated
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from a probabilistic point of view. Finally, we made an experimental evaluation based
on simulation.

On the other hand, the third problem was related to the inappropriate use of
resources and its relation to the reliability of MapReduce frameworks. For this con-
tribution we have followed a feedback-based approach, applied to a paradigmatic use
case in YARN, the application master. The experimental evaluation has been made
again by means of a round-based simulator.

1.6 Thesis outline
This dissertation is organized into three remaining parts: preliminaries, contributions
and conclusions sections.

The preliminaries include two chapters. Chapter 2 explains the basic theoretical
terminology in data-intensive frameworks, focusing on explaining the MapReduce
approach, and its fault-tolerant mechanisms. Chapter 3 gives a general literature
review in data-intensive frameworks, with particular emphasis on the contributions
regarding their reliability improvements.

The contributions are described in three chapters. Chapter 4 is dedicated to
formalize the failure detector mechanism in MapReduce-based systems, with partic-
ular focus on the omission failures. Chapter 5 introduces a novel failure handling
framework that enhances the MapReduce reliability, by means of the sharing of re-
sponsibilities between two master peers. Chapter 6 introduces a novel resource allo-
cation framework, that enhances the MapReduce resource utilization and reliability,
by means of feedback-based resource allocation approach at the container level.

Finally, Chapter 7 summarizes the contributions, and highlights the future lines
and the main publications of this dissertation.
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Part II

Context





Chapter 2

Background

This chapter gives the essential theoretical preliminaries in order to easily follow the
ongoing part of the thesis. Just at the beginning, we define the concept of reliability,
and its importance in distributed systems. After giving a general overview about the
data-intensive frameworks, we focus on the definition of the MapReduce framework.
After this, we briefly describe its wide-spread implementation, Apache Hadoop, and
its next-generation MapReduce implementation, commonly known as Hadoop YARN
(Yet Another Resource Negotiator), which are classified as Hadoop MapReduce 1.0
and Hadoop MapReduce 2.0, respectively. Furthermore, an important part is ded-
icated to fault-tolerant concepts of MapReduce, and their implementation mecha-
nisms. Finally, we summarize the potential of this thesis proposal.

2.1 Reliable distributed systems

The key concept of a distributed system is the network, which enables communica-
tion and coordination between the machines of such a distributed system by means
of exchanging messages. In comparison to a centralized system, distributed systems
provide well know advantages, such as reliability, scalability and, in some contexts,
performance enhancement. However, distributed systems also have many disadvan-
tages, being the complexity of these systems one of the most noticeable. This was
clearly stated by Leslie Lamport, a foundational researcher in the theory of dis-
tributed computing, who said that “a distributed system is one in which the failure of
a computer you didn’t even know existed can render your own computer unusable".

In computer science, dependability is an already matured field. It is mainly con-
sidered as a property of a computer system that delivers what is intended to deliver.
Avizienis et al., in [24], explain in detail this property through attributes, threats,
and means. One of the most important attribute of dependability is the reliability.
Reliability studies the continuity of a correct service. In other words, it represents
the time function probability R(t) that a specific computer system does not fail in
a predicted time interval t, considering that the system was correctly functioning at
the initial time t = 0 [91].

Reliability is ensured by means of different fault-tolerant mechanisms, such as
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software/hardware replication [86, 57, 56, 54], state checkpointing [34, 47], agreement
protocols [87, 69, 52, 55, 70], etc. The basis of these implementations is mostly
guided and dependent by these fault-tolerant levels or steps: monitoring, detection,
handling, and recovery. According to the system requirements, all these levels could
work concurrently, or in sequence.

Reliability is an important attribute in both centralized systems and distributed
systems. It is very common to measure the reliability attribute with the system
uptime or downtime. Whereas the system uptime refers to the time period during
which a system is available (operational), the downtime concept refers to the time
period when a system in unavailable. The longer the uptime is, the better the system
behaves. In mission-critical system infrastructures, e.g., power plants, military and
air traffic control systems, etc, whose correct and consistent functioning is vital for
human lives, the reliability is even more important and its downtime requirement is
stricter.

2.2 Data-intensive processing frameworks
The emergence of very complex computing problems has required applying approaches
which involve the division of the problem into smaller tasks. When these tasks are
executed in a concurrent (or parallel) manner, we can speak about parallel computing.

Due to the increase of data volumes in current applications [27], data-intensive
computing has become one of the most popular forms of parallel computing. Its
main goal is to process large amounts of data in parallel. It is worth mentioning
the difference between data-intensive versus compute-intensive parallel approaches.
Whereas the former concept is linked to frameworks whose primary goal is devoted
to I/O processing on large volumes of data, the later concept is primarily devoted to
high computational requirements on small volumes of data.

These data-intensive frameworks are very relevant nowadays, due to the explo-
sion of digital data we are living. This data expansion has mainly come from three
sources: (i) scientific experiments from fields such as astronomy, particle physics, or
genomics; (ii) data from sensors and (iii) citizens publications in channels such as
social networks.

2.3 MapReduce programming model
The MapReduce programming model is one of the most widespread approaches of
data-intensive computing. It represents a programming model for processing large
data sets [42]. MapReduce has been discussed by researchers for more than a decade,
including the database community. Even though its benefits have been questioned
when compared to parallel databases, some authors suggest that both approaches
have their own advantages, and there is not a risk that one could become obso-
lete [97]. MapReduce’s advantages over parallel databases include storage-system
independence and fine-grain fault tolerance for large jobs. Other advantages are sim-
plicity, automatic parallelism and scalability. These features make MapReduce an
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Figure 2-1: MapReduce logical workflow.

appropriate option for data-intensive applications, being more and more popular in
this context. Indeed, it is used for different large-scale computing environments, such
as Facebook Inc. [6], Yahoo! Inc. [12], and Microsoft Corporation [9].

By default, every MapReduce execution needs a special node, called master ; the
other nodes are called workers. The master keeps several data structures, like the
state and the identity of the worker machines. Different tasks are assigned to the
worker nodes by the master. Depending on the phase, tasks may execute two different
functions: Map or Reduce. As explained in [42], users have to specify a Map function
that processes a key/value pair to generate a set of intermediate key/value pairs,
and a Reduce function that merges all intermediate values associated with the same
intermediate key. In this way, many real world problems can be expressed by means
of the MapReduce model.

A simple MapReduce data workflow is shown in Figure 2-1. This figure represents
a MapReduce workflow scenario, from the input data to the output data. The most
common implementations keep the input and output data in a reliable distributed
file system, while the intermediate data is kept in the local file system at the worker
nodes.

2.3.1 Hadoop MapReduce 1.0 versus Hadoop MapReduce 2.0

The most common implementation of MapReduce is part of the Apache Hadoop open-
source framework [11]. Hadoop uses the Hadoop Distributed File System (HDFS) as
the underlying storage backend, but it was designed to work on many other distributed
file systems as well.

The main components of Apache Hadoop are MapReduce and HDFS. Hadoop
MapReduce consists of a JobTracker and many TaskTrackers, which constitute the
processing master and workers respectively. TaskTrackers consist of a limited number
of slots for running map or reduce tasks. The MapReduce workflow is managed
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by the JobTracker, whose responsibility goes beyond the MapReduce process. For
instance, the JobTracker is also in charge of the resource management. Hadoop
HDFS consists of a NameNode and many DataNodes, that is, the storage master
and workers respectively. Whereas the NameNode manages the file system metadata,
DataNodes hold a portion of data in blocks.

The traditional version of Hadoop (Hadoop MapReduce 1.0) has faced several
shortcomings on large-scale systems, concerning scalability, reliability and availability.
The YARN (Yet Another Resource Negotiator) project (Hadoop MapReduce 2.0) has
recently been developed with the aim of addressing these problems [101].

As previously stated, in the classic version of Hadoop, the JobTracker handles
both resource management and job scheduling. The key idea behind YARN is to
separate concerns, by splitting up the major functionalities of the JobTracker, re-
source management and job scheduling/monitoring, into separate entities. In the
new architecture, there is a global ResourceManager (RM) and per-application Ap-
plicationMaster (AM). The ResourceManager and a per-node slave, the NodeManager
(NM) compose the data-computation framework. The per-application Application-
Master is in charge of negotiating resources from the ResourceManager and working
with the NodeManager(s) to execute and monitor the progress of the tasks. The
Resource Manager includes two components: a Scheduler and Application Manager.
Whereas the Scheduler is in charge of resource allocation, the Application Manager
accepts job submissions, and initiates the first job container for the job master (Ap-
plication Master). This architectural change has as main goals to provide scalability
and remove the single point of failure presented by the JobTracker. However, the
resource scheduler, the application manager and the application master now become
single points of failure in the YARN architecture.

2.3.2 Fault-tolerant mechanisms for MapReduce processing

In Figure 2-2 we show a big picture of the default fault-tolerant concepts and their
mechanisms in MapReduce.

At the core of failure detection mechanism is the concept of heartbeat. Any kind
of failure that is detected in MapReduce has to fulfill some preconditions, in this
case to miss a certain number of heartbeats, so that the other entities in the system
detect the failure. The classic implementation of MapReduce has no mechanism for
dealing with the failure of the master, since the heartbeat mechanism is not used to
detect this kind of failure. Workers send a heartbeat to the master, but the master’s
health is monitored by the cluster administrator. This person must first detect this
situation, and then manually restart the master.

Because the worker sends heartbeats to the master, its eventual failure will stop
this notification mechanism. From the worker side, there is a simple loop that pe-
riodically sends heartbeat method calls to the master; by default, this period has
been adjusted to 3 seconds in most of the implementations. The master makes a
checkpoint every 200 seconds, in order to detect if it has missed any heartbeats from
a worker for a period of 600 seconds, that is, 10 minutes. If this condition is fulfilled,
then a worker is declared as dead and removed from the master’s pool of workers
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Figure 2-2: Fault tolerance in MapReduce: The basic fault tolerance definitions (de-
tection, handling and recovery) with their corresponding implementations.

upon which can schedule tasks on. After the master declares the worker as dead,
the tasks running on a failed worker are restarted on other workers. Since the map
tasks that completed its work, kept their output on the dead worker, they have to be
restarted as well. On the other hand, reduce tasks that were not completed need to
be executed in different workers, but since completed reduce tasks saved its output
in HDFS, their re-execution is not necessary.

Apart from telling to the master that a worker is alive, heartbeats also are used as
a channel for messages. As a part of the heartbeat, a worker states whether it is ready
to run a new task, and in affirmative case, the master will use the heartbeat return
value for communicating the actual task to the worker. Additionally, if a worker
notices that it did not receive a progress update for a task in a period of time (by
default, 600 seconds), it proceeds to mark the task as failed. After this, the worker’s
duty is to notify the master that a task attempt has failed; with this, the master
reschedules a different execution of the task, trying to avoid rescheduling the task on
the same worker where it has previously failed.

The master’s duty is to manage both, the completed and ongoing tasks on the
worker to be re-executed or speculated, respectively. In the case of a worker failure,
before the master decides to re-execute the completed and ongoing tasks so that may
skip the default timeout of MapReduce (10 minutes), there is only one opportunity
left, speculative execution.

The speculative execution is meant to be a method of launching another equivalent
task as a backup, but only after all the normal tasks have been launched, and after
the average running time of the other tasks. In other words, a speculative task is
basically run for map and reduce tasks that have its completion rate below a certain
percentage of the completion rate of the majority of running tasks.

An interesting dilemma is how to differentiate the handling and recovery mech-
anisms. A simple question arises: Does MapReduce differentiate between handling
and recovery?

In some sense, both, speculative execution and re-execution try to complete a
MapReduce job as soon as possible, with the least processing time, while execut-
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ing its tasks on minimal resources (e.g., to avoid long occupation of resources by
some tasks)1. However, the sequence of performing the speculative execution and
re-execution is what makes them different, therefore considering the former one be
part of the handling process, and the latter on part of the recovery. An additional
difference to this is that, while the re-execution mechanism tries to react after the
heartbeat mechanism has declared that an entity has failed, the speculative execution
does not need the same timeout condition in order to take place; it reacts sooner.

Regarding to the nomenclature related to failures and errors, we consider a job
failure when the job does not complete successfully. In this case, the first task that fails
can be considered as an error, because it will request its speculation or re-execution
from the master. A task failure can happen because the network is overloaded (in
this case, this is also an error, because the network fault is active and loses some
deliveries). In order to simplify this, we assume that in MapReduce, a task or any
other entity is facing a failure, whenever it does not fulfill its intended function.

From the point of view of Hadoop’s MapReduce, failures can happen in the master
and worker. When the master fails, this is a single point of failure. But in the case of
the worker, it may have a task fail (map or reduce task, or shuffle phase) or the entire
worker. During a map phase, if a map task crashes, Hadoop tries to recompute it in a
different tasktracker. In order to make sure that this computation takes place, most
of reducers should complain for not receiving the map task output or the number of
notifications is higher or equal to three [92]. The failed tasks have higher priority to
be executed than the other ones; this is done to detect when a task fails repeatedly
due to a bug and stop the job. In a reduce phase, a reduce task failure will have to be
executed in a different tasktracker, having in mind that the three reduce phases should
start from the beginning. The reduce task is considered as failed, if the majority of its
shuffle attempts fails, the shuffle phase does not succeed to get five map outputs, or
its progress stops for a long time. During the shuffle phase, a failure may also happen
(in this case, a network failure), because two processes (in our case two daemons) can
be in a working state, but a network failure may stop any data interchange between
them. MapReduce implementations have been improved by means of the Kerberos
authentication system, preventing a malicious reduce task from requesting another
user’s map output.

2.4 Summary

Data-intensive processing frameworks have facilitated the processing of large volumes
of data. Nevertheless, the implementation of these programming models in large-
scale clusters of commodity machines has arisen the importance of considering their
reliability capabilities. This is especially necessary for production clouds that need
to guarantee complex Service Level Agreements (SLAs) among its heterogeneous ap-
plications.

1This is not particularly true in the case of speculative execution, since it has proven to exhaust
a considerable amount of resources, when executed on heterogeneous environments [115, 72] or when
the system is going under failures [45]

32



The present chapter has briefly mentioned the basic functioning of reliable dis-
tributed systems, and then concentrated on describing the data-intensive processing
frameworks, with particular emphasis on the MapReduce programming model, and
its fault-tolerant mechanisms.

In order to place our proposals firmly in the field, and to familiarize the reader
with similar contributions, we will present the state of the art in the next chapter.
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Chapter 3

State of the art

This chapter gives a summary and analysis of the state of the art related to the main
thesis contributions. First, we present a general analysis of the related work in data-
intensive computing, and its well known applications. We then continue by analyzing
the reliability optimizations of data-intensive applications, with particular emphasis
on MapReduce. Part of this section covers the timeline of the most important Apache
Hadoop software from a point of view of reliability customizations. Later, we discuss
the state of the art in resource efficient optimizations of data-intensive applications,
focusing this part again on MapReduce. At the end, we summarize the chapter.

3.1 Data-intensive processing frameworks

As mentioned before, MapReduce framework represents the de facto standard in
the data-intensive computing community. However, there are many other projects,
whose design and functionality differ from the basic MapReduce framework. Next, we
present a collection of projects with significant impact in data-intensive computing.

3.1.1 Dryad/DryadLINQ

Knowing the benefits of Google’s MapReduce, Microsoft designed its own data pro-
cessing engine. In this way, Dryad [62] was introduced in 2007. After one year,
Microsoft introduced a high level language system for Dryad, composed of LINQ
expressions, and called it DryadLINQ [109].

Dryad represents a general-purpose distributed execution engine, whose main tar-
get is coarse-grain data-parallel applications. In order to form a dataflow graph,
Dryad combines computational vertices with communication channels. An applica-
tion is run in Dryad by executing the vertices of the graph on a set of available ma-
chines, communicating as appropriate through files, TCP pipes, and shared-memory
FIFOs.

Whereas mainly inspired from the (i) graphic processing units (GPUs) languages,
(ii) Google’s MapReduce and (iii) parallel databases, Dryad is built also having in
mind their disadvantages. As a consequence, Dryad as a framework allows the devel-
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oper to have fine control over the communication graph, as well as the subroutines
that live at its vertices. In order to describe the application communication patterns,
and express the data transport mechanisms (files, TCP pipes, and shared memory
FIFOs) between the computation vertices, a Dryad application developer can specify
an arbitrary directed acyclic graph (DAG). By directly specifying this kind of graph,
the developer has also greater flexibility to easily compose basic common operations,
leading to a distributed analogue of “piping” together traditional Unix utilities such
as grep, sort and head.

Dryad graph vertices are enabled to use an arbitrary number of inputs and out-
puts. It is assumed that the communication flow determines each job structure.
Consequently many other Dryad mechanisms (such as resource management, fault
tolerance etc.) follow this pattern. A Dryad job is a directed acyclic graph where
each vertex is a program and edges represent data channels. It is a logical computa-
tion graph that is automatically mapped onto physical resources by the runtime. At
runtime each channel is used to transport a finite sequence of structured items.

Every Dryad job is coordinated by a master called “job manager” that runs either
within the cluster or on a user’s workstation, by having network access to the cluster.
The job manager contains (i) the application-specific code, that allows to construct
the job’s communication graph, and (ii) library code, that allows to schedule the work
across the available resources. Vertices transfer the data between them, therefore the
job manager is only responsible for control decisions. DryadLINQ represents a very
important extension of Dryad, since it is a set of language extensions and the corre-
sponding system that can automatically and transparently compile SQL, MapReduce,
Dryad and similar programs in a general-purpose language into distributed compu-
tations that can run on large-scale infrastructures. DryadLINQ does this in two
ways, by (i) adopting an expressive data model of .NET objects; and (ii) by sup-
porting general-purpose imperative and declarative operations on datasets within a
traditional high-level programming language.

A DryadLINQ program is based on LINQ expressions that are sequentially run on
top of datasets. The DryadLINQ main duty is to translate the parallelism portion of
the program into a distributed execution, ready to be executed on the Dryad engine.

3.1.2 SCOPE

SCOPE is a scripting language for massive data analysis [31], also coming from Mi-
crosoft. Its design has a strong resemblance to SQL, which was intentionally decided.
SCOPE is a declarative language. As in the case of MapReduce, it hides the com-
plexity of the lower platform and its implementation.

A user SCOPE script runs the basic SCOPE modules, (i) compiler, (ii) runtime,
and (iii) optimizer, before initiating the physical execution. In order to manipulate
input and output, SCOPE provides respective customizable commands, which are,
extract and output. The select command of SCOPE is similar to the SQL one, with
the main difference that subqueries are not allowed. To solve this issue, a user should
rewrite complex queries with outer joins.

Apart from the SQL functionalities, SCOPE provides MapReduce-alike commands,
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which manipulate rowsets: process, reduce, and combine. The process command takes
a rowset as input, and after processing each row, it outputs a sequence of rows. The
reduce command takes a rowset as input, which has been grouped on the grouping
columns specified in the ON clause. Then, it processes each group, and returns as out-
put zero, one or multiple rows per group. The combine command takes two rowsets
as input. It combines them depending on the requirements, and outputs a sequence
of rows. The combine command is a binary operator.

Every SCOPE script resembles SQL, but its expression is implemented with C#,
which needs to pass through the SCOPE compiler and optimizer, in order to be ready
to run on parallel execution plan, which gets executed on the cluster as a Cosmos
(Dryad) job.

According to different evaluation experiments, SCOPE demonstrates its powerful
query execution performance, that scales in a linear manner with respect to the cluster
and data sizes.

3.1.3 Nephele

In [104], authors present the basic foundations of Nephele, a novel research project
at the time, whose aim was parallel data processing in dynamic clouds.

According to authors, state-of-the-art frameworks like MapReduce and Dryad are
cluster-oriented models, which assume that their resources are a static set of homo-
geneous nodes. Therefore, these frameworks are not prepared enough for production
clouds, whose exploitation of the dynamic resource allocation is a must. Based on
this, they propose Nephele, a project which shares many similarities with Dryad, but
providing more flexibility.

Nephele’s architecture has a master-worker design pattern, with one Job Manager
and many Task Managers. Each instance (aka VM) has its own Task Manager. As
in Dryad, every Nephele job is expressed as a directed acyclic graph (DAG), where
the vertices are tasks, and graph edges define the communication flow.

After writing the code for particular tasks, the user should define a Job Graph,
consisting of linked edges and vertices. In addition, a user could specify other details,
such as the number of subtasks in total, the number of subtasks per instance, instance
types, etc. Each user Job Graph is then transformed into an Execution Graph by the
Job Manager. Every specified manual configuration is taken into account by the Job
Manager. Otherwise, the Job Manager places the default configuration according to
the type of the respective job.

Compared to the default Hadoop on a small cloud infrastructure, the evaluation
metrics are impressive and in favor to Nephele, showing better performance and
resource utilization.

The main drawback of Nephele is that, due to its academic origin, it was not
embraced by the research and industry community. One of the reasons could be its
similarity with Dryad. An additional drawback of Nephele was its complexity, mainly
compared to Hadoop MapReduce.
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3.1.4 Spark

Spark is a novel framework for in-memory data mining on large clusters, whose main
focus are applications that reuse the same dataset across multiple operations [112].
In this domain we found basically applications that are based on machine learning al-
gorithms, such as text search, logistic regression, alternating least squares, etc. Spark
programs are executed on top of the Mesos environment [59], where each of them
needs its own driver (master) program to manage the control flow of the operations.
Currently, Spark can also be run on top of other resource management frameworks,
such as Hadoop YARN.

The main abstractions of Spark are:

• Resilient Distributed Datasets (RDDs) [111]. These are read-only collections of
objects that are spread on cluster nodes.

• Parallel operations. These operations can be performed on top of the RDDs.
Examples of these operations are reduce, collect, foreach, etc.

• Shared variables. These variables may be twofold: (i) broadcast variables, that
copy the data value once to each worker; and (ii) accumulators, that can only
“add” for being used as an associative operation, whose purpose (value) is read-
able by the driver only.

The most important abstraction of Spark are RDDs. Its primary use is to enable
efficient in-memory computations on large-clusters. This abstraction evolves in order
to solve the main issues of parallel applications, whose intermediate results are very
important in future multiple computations.

The main advantages of RDDs are the efficient data reuse, which comes with a
good fault tolerance support. Its interface is based on coarse-grained transformations,
by applying the same operation in parallel to a large amount of data. Each RDD is
represented through a common interface, consisting of:

• A set of partitions. These are atomic pieces of the dataset.

• Set of dependencies. These are dependencies on parent RDDs.

• A function for computing the dataset from its parent.

• Metadata about its (i) partitioning scheme, and (ii) data placement.

Examples of applications that can take advantage of this feature are iterative
algorithms and interactive data mining tools. Spark shows great results on some of
these applications, outperforming Hadoop by 10x [112, 111, 114]. As part of Spark,
the research community has proposed different modules, such as D-Streams [114, 113],
GraphX [53], Spark SQL [21], and many others.

D-Streams represents a stream processing engine, an alternative to live queries (or
operators) maintained by distributed event processing engines. Authors argue that

38



it is better to have small batch computations by using the advantages of in-memory
RDDs, instead of using long-lives queries which are more costly and complex, mainly
in terms of fault tolerance.

GraphX is a graph processing framework, which is built on top of Spark. GraphX
represents an alternative to the classical graph processing systems, because it can
efficiently handle iterative processing requirements of graph algorithm, unlike the
general-purpose frameworks, such as MapReduce. The advantage of GraphX with
respect to the classical graph processing frameworks is that it enables wider range of
computations, and preserves the advantages of general-purpose dataflow frameworks,
mainly the fault tolerance.

Finally, Spark SQL is another Apache Spark module, which enables an efficient
intersection between relational processing and Spark functional programming. It does
this by introducing the (i) DataFrame API, which enables the execution of relational
operations, and (ii) Catalyst, which is another module that optimizes queries, and in
addition simplifies data sources additions, and optimization rules, among others.

The main idea behind Apache Spark is to use iterative queries that are main
memory based, which is also its main drawback. If the user request is not related to
the previous and recent RDDs, the query process should start from the beginning. In
this scenario, if we have to go back to the first iteration, MapReduce usually performs
better than Spark.

3.2 Reliability in data-intensive processing frameworks

Several projects have addressed different reliability issues in data-intensive frame-
works, in particular for MapReduce. During this section, we have tried to collect
those studies, adapting them to the most common failure type divisions in distributed
systems [30, 90, 26]: crash, omission, arbitrary, network and security failures.

In [45], authors have evaluated Hadoop, demonstrating a large variation in Hadoop
job completion time in the presence of failures. According to authors, this is because
Hadoop uses the same functionality to recover from worker failure, regardless of the
cause or failure type. Since Hadoop couples failure detection and recovery with over-
load handling into a conservative design with conservative parameter choices, it is
often slow reacting to failures, exhibiting different response times under failure. Au-
thors conclude that Hadoop makes unrealistic assumptions about task progress rates,
re-discovers failures individually by each task at the cost of great degradation in job
running time, and does not consider the causes of connection failures between tasks,
which leads to failure propagation to healthy tasks.

In [29], authors have evaluated the performance and overhead of both the checkpointing-
based fault-tolerance and the re-execution based fault tolerance in MapReduce through
event simulation driven by Los Alamos National Labs (LANL) data. Regarding
MapReduce, the fault tolerance mechanism which was explored is re-execution, where
all map or reduce tasks from a failed core are reallocated dynamically to operational
cores whether the tasks had completed or not (i.e., partial results are locally stored),
and execution is repeated completely. In the evaluation of the performance of MapRe-
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duce in the context of real-world failure data, it was identified that there is pressure
to decrease the size of individual map tasks as the cluster size increases.

In [65], authors have introduced an analytical study of MapReduce performance
under failures, comparing it to MPI. This research is HPC oriented and proposes an
analytical approach to measure the capabilities of the two programming models to
tolerate failures. In the MapReduce case, they have started with the principle that
any kind of failure is isolated in one process only (e.g., map task). Due to this, the
performance modeling of MapReduce was built on the analysis of each single process.
The model consists of introducing an upper bound of the MapReduce execution time
when no migration/replica is utilized, followed by an algorithm to derive the best
performance when replica based balance is adopted. According to the evaluation
results, MapReduce achieves better performance then MPI on less reliable commodity
systems.

3.2.1 Crash failure

During a crash failure, the process crashes at time t and never recovers after that
time. Since a crash failure involves process failing to finish its function according to
its general definition, this means that in MapReduce a crash failure can lead to a node
(machine), daemon (JobTracker or TaskTracker) or task (map, reduce) failure. These
failures surge when a node simply crashes, and affects all of its daemons. But this
is not only the case for a crash failure; there are many other cases when particular
daemons or tasks crash due to Java Virtual Machine (JVM) issues, high overloads,
memory or CPU errors, etc.

At this section point, we will summarize the master crash failures first, and then
continue with other crash failures in MapReduce. An important contribution to
the high availability of JobTracker is the work of Wang et al. [103]. Their paper
proposes a metadata replication based solution to enable Hadoop high availability by
removing single point of failure in Hadoop, regardless of whether it is NameNode or
a JobTracker. Their solution involves three major phases:

• Initialization phase. Each standby/slave node is registered to active/primary
node and its initial metadata (such as version file and file system image) are
caught up with those of active/primary node.

• Replication phase. The runtime metadata (such as outstanding operations and
lease states) for failover in future are replicated.

• Failover phase. Standby/new elected primary node takes over all communica-
tions.

A well known implementation of this contribution has been done by Facebook, Inc.
[28], by creating the active and standby AvatarNode. This node is simply wrapped to
the NameNode, and the standby AvatarNode takes the role of the active AvatarNode
in less than a minute; this is because every DataNode speaks with both AvatarNodes
all the time.
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However, the above solution did not prove to give the optimum for the com-
pany requirements, since their database has grown by 2500x in the past four years.
Therefore, another approach named Corona [48] was used. This time, for Facebook
researchers it was obvious that they should separate the JobTracker responsibilities:
resource management and job coordination. The cluster manager should look for
cluster resources only, while a dedicated JobTracker is created per each job. As you
can notice, at many points, the design decisions of Corona are similar to Hadoop
YARN. Additionally, Corona has been designed to use push-based scheduling, as a
major difference to the pull-based scheduling of the Hadoop MapReduce.

In the work [83], authors propose an automatic failover solution for the JobTracker
to address the single point of failure. It is based on the Leader Election Framework
[30], by using Apache Zookeper [5]. This means that multiple JobTrackers (at least
three) are started together, but only one of them is the leader at a particular time.
The leader does not serve any client, but receives periodical checkpoints from the
remaining JobTrackers. If one of the NameNodes fails, the leader recovers its avail-
ability from the most recent checkpointed data. However, this solution within Yarn
has not been explored for job masters [101] and only addresses other single points of
failure, such as the resource manager daemon.

In case of a TaskTracker crash failure, its tasks are by default re-executed in the
other TaskTrackers. This is valid for both, map and reduce tasks. Map tasks that
completed on the dead TaskTracker are restarted because the job is still in the progress
phase and did not finish yet, and contains n number of reduce tasks, which need that
particular map output. Reduce tasks are re-executed as well, except for those reduce
tasks that have completed, because they have saved its output in a distributed file
system, that is, in HDFS.

MapReduce philosophy is based on the fact that a TaskTracker failure does not
represent a drastic damage to the overall job completion, especially long jobs. This
is motivated by large companies [41], which use MapReduce on a daily basis, and
argue that even with a loss of a big number of machines, they have finished in a
moderate completion time1. Any failure would simply speculate/re-execute the task
in a different TaskTracker.

There are cases where TaskTrackers may be blacklisted by mistake from the Job-
Tracker. In fact, this happens because the ratio of the number of the failed tasks
in the respective TaskTracker is higher than the average failure rate on the overall
cluster [105]. By default, the Hadoop’s blacklist mechanism marks a TaskTracker as
blacklisted if the number of tasks that have failed is more than four. After this, the
JobTracker will stop assigning future tasks to that TaskTracker for a limited period of
time. These blacklisted TaskTrackers can be brought to live, only by restarting them;
in this way, they will be removed from the JobTracker’s blacklist. The blacklisting
issue could also go beyond this. This can be explained with one scenario. Let us
assume that, at some point, reduce tasks that are running in the other TaskTrackers
will try to connect to the failed TaskTracker. Some of the reduce tasks need the map

1Jeff Dean, one of the leading engineers in Google, said: (we) “lost 1600 of 1800 machines once,
but finished fine.”
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output from the failed TaskTracker. However, as they cannot terminate the shuffle
phase (because of the missing map output from the failed TaskTracker), they fail.
Experiments in [45] show that reduce tasks die within seconds of their start (without
having sent notifications) because all the conditions which declare the reduce task
to be faulty become temporarily true when the failed node is chosen among the first
nodes to connect to. In these cases, when most of the shuffles fail and there is little
progress made, there is nothing left except re-execution, while wasting an additional
amount of resources.

The main goal of the work presented in [40] is to represent a byzantine fault-
tolerant (BFT) MapReduce runtime system that tolerates faults which are arbitrary.
The idea behind the paper is doubling each task in execution. This means that if
one of the tasks fails, the second backup task will finish on time, reducing the job
completion time by using larger (intuitively, you may guess that doubling the tasks
leads to approximately doubling the resources) amounts of resources.

A research paper presented in [75] describes Cloud MapReduce (CMR), a new
fully distributed architecture to implement the MapReduce programming model on
top of the Amazon cloud OS. The nodes are responsible for pulling job assignments
and their global status in order to determine their individual actions. The proposed
architecture also uses queues to shuffle results from map tasks to reduce tasks. Map
tasks are meant to write results as soon as they are available and reduce tasks need
to filter out results from failed nodes, as well as duplicate results. The preliminary
results of the work indicate that CMR is a practical system and its performance is
comparable to Hadoop. Additionally, from the experimental results it can be seen that
the usage of queues that overlap the map and shuffle phase seems to be a promising
approach to improve MapReduce performance.

In the early versions of Hadoop (including the Hadoop 0.20 version), a crash failure
of the JobTracker involved that all active work was lost entirely when restarting the
JobTracker. The next Hadoop version 0.21 gave a partial solution to this problem,
making periodic checkpoints into the file system [11], so as to provide partial recovery.

In principle, it is very hard to recover any possible data after a TaskTracker’s
failure. That is why Hadoop’s reaction is to simply re-execute the tasks in the other
TaskTrackers. However, there are works which have tried to take the advantage of
checkpointing [38], or saving the intermediate data in a distributed file system [67, 68].

Regarding [38], among the interesting aspects of the pipelined Hadoop implemen-
tation is that it is robust to the failure of both map and reduce tasks, introducing the
“checkpoint” concept. It works on the principle that each map and reduce task noti-
fies the JobTracker, which spreads or saves the progress, informing the other nodes
about it. For achieving this, a modified MapReduce architecture is proposed that al-
lows data to be pipelined between operators, preserving the programming interfaces
and fault tolerance models of a full-featured MapReduce framework. This provides
significant new functionality, including “early returns” on long-running jobs via online
aggregation, and continuous queries over streaming data. The paper has also demon-
strated the benefits for batch processing: by pipelining both within and across jobs,
the proposed implementation can reduce the time to job completion. This study work
can also be considered as an optional solution to an omission failure.
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In [68], authors propose an intermediate storage system, with two features in mind:
data availability and minimal interference. According to this paper, these issues are
solved with ISS (intermediate storage system), which is based on three techniques:

• Asynchronous replication. This does not block the ongoing procedures of the
writer. Moreover the strong consistency is not required when having in mind
that in platforms like Hadoop and similar, there is a single writer and single
reader for intermediate data.

• Rack-level replication. This technique is chosen, because of the higher band-
width availability within a rack, taking into account that the rack switch is not
heavily used as the core switch.

• Selective replication. It is used considering that the replication will be applied
only to the locally-consumed data; in case of failure, the other data may be
fetched again without problems.

This work is important to be mentioned, because for every TaskTracker failure,
every map task that has been completed, it has already saved its output in a reli-
able storage system different from the local file system. In this way, the amount of
redundant work for re-executing the map task that has been completed on the failed
TaskTracker is reduced again.

3.2.2 Omission failure (stragglers)

An omission failure is a more general kind of failures. This happens when a process
does not send (or receive) a message that it is supposed to send (or receive). In
MapReduce terminology, omission failures are synonym for stragglers. Indeed, the
concept of stragglers is very important in the MapReduce community, especially task
stragglers, which could jeopardize the job completion time. Typically, the main causes
of a MapReduce straggler task are: (i) a slow node, (ii) network overload and (iii)
input data skew [18].

Most of the state of the art in this direction has intended to improve the job
execution time, by means of doubling the overall small jobs [15], or just by doubling
the suspected tasks (stragglers) through different speculative execution optimizations
[42, 62, 115, 18, 35, 107].

In [115], authors have also proposed a new scheduling algorithm called Longest
Approximate Time to End (LATE) to improve the performance of Hadoop in a het-
erogeneous environment, brought by the variation of VM consolidation amongst dif-
ferent physical machines, by preventing the incorrect execution of speculative tasks.
In this work, authors try to solve the issue of finding the real stragglers2 among the
MapReduce tasks, so as to speculatively execute them, while giving them the deserved
priority. As the node heterogeneity is common in the real-world infrastructures and

2It is important to mention that, differently from [115] which considers tasks as stragglers, in the
default paper of Google [42], a straggler is “a machine that takes an unusually long time to complete
one of the last few map or reduce tasks in the computation.”
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particularly cloud infrastructures, the speculative execution in the default Hadoop’s
MapReduce implementation is facing difficulties to give a good performance. The
paper proposes an algorithm which should in some way improve the MapReduce per-
formance in heterogeneous environments. It starts giving some assumptions made
by Hadoop, and how they are broken down in practice. Later on, it proposes the
LATE algorithm, which is based on three principles: prioritizing tasks to speculate,
selecting fast nodes to run on, and capping speculative tasks to prevent thrashing.
The paper has an extensive experimental evaluation, which proves the valuable idea
implemented in LATE.

Mantri [18] is another important contribution related to omission failures, which
are called outliers in this paper. The main aim of the contribution is to monitor and
cull or relax the outliers, accordingly to their causes. Based on their research, outliers
have many causes, but mainly are enforced by MapReduce data skew, crossrack traffic,
and bad (or busy) machines. In order to detect these outliers, Mantri does not rely
only on task duplication. Instead, its protocol enhances according to outlier causes.
A real time progress score is able to separate long tasks from real outliers. Whereas
the former tasks are allowed to be run, the real outliers are only duplicated when
new available resources arise. Since the state-of-the-art contributions were mostly
duplicating tasks at the end of the job, Mantri is able to make smart decision even
before this, in case the progress score of the task is heavily progressing. Apart from
data locality, Mantri places task based on the current utilization of network links,
in order to minimize the network load and avoid self-interference among loads. In
addition, Mantri is also able to measure the importance of the task output, and
according to a certain threshold, it decides whether to recompute task or replicate
its output. In general, the real-time evaluations and trace-driven simulations show
Mantri to improve the average completion time for about 32%/

In [116], authors have proposed two mechanisms to improve the failure detection
in Hadoop via heartbeat, but only in the worker side, that is, the TaskTracker. While
the adaptive interval mechanism adjusts the TaskTracker timeout according to the
estimated job running time in a dynamic way, the reputation-based detector compares
the number of fetch-errors reported when copying intermediate data from the mapper
and when any of the TaskTrackers reaches a specific threshold that TaskTracker will be
announced as a failed one. As authors explain, the adaptive interval is advantageous
to small jobs while the reputation-based detector is mainly intended to longer jobs.

GRASS [17] is another novel optimization framework, which is oriented to trim-
ming the stragglers for approximation jobs. Approximation jobs are very common in
the last period, because many domains are willing to have partial data in a specific
deadline or error margin, instead of processing the entire data in an unlimited time or
with 0% error margin. After the introduction of the MapReduce programming model,
which came with a simple solution of speculative execution of slow tasks (stragglers),
the research community proposed decent alternatives, such as LATE [115] or Mantri
[18]. However, they were not meant to give near to optimal solution for the domain
of approximation analytics. And this is the advantage of GRASS, which is basically
formed of two algorithms:
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1. Greedy Speculative Scheduling (GS). This algorithm is intended to greedily pick
a task that will be scheduled next.

2. Resource Aware Speculative Scheduling (RAS). This algorithm is able to mea-
sure the cost of leaving an old task to run or schedule a new task, according to
some important parameters (e.g. time, resources, etc.)

GRASS is a combination of GS and RAS.
Depending on the cluster infrastructure size, but also on other parameters, the

scheduler could impose different limitations per user or workload. Among others, it
is common to place a limit on the number of concurrent running tasks. The overall
set of these simultaneous tasks per each user (or workload) is known as wave. If a
GRASS job requires many waves, then it starts with RAS and finally, in the last two
waves uses GS. If the jobs are short, it may use only GS. This switching is mostly
dependent on:

• Deadline-error bound.

• Cluster utilization.

• Estimation accuracy for two parameters, trem (remaining time for and old job),
and tnew (an estimated time for a new job).

Evaluations show that GRASS improves Hadoop and Spark, regardless of the
usage of LATE or Mantri, by 47% and 38% respectively, in production workloads of
Facebook and Microsoft Bing. Apart from approximation analytics, the speculative
execution of GRASS also shows to be better for exact computations.

In [35], authors propose an optimized speculative execution algorithm called Max-
imum Cost Performance (MCP) that is characterized by:

• Apart from the progress rate, it takes into consideration the process bandwidth
in a phase, in order to detect the slow tasks.

• It uses exponentially weighted moving average (EWMA), whose duty is to pre-
dict the process speed and also predict the task remaining time.

• It builds a cost-aware model that determines what task needs a backup based
on the cluster load.

In addition, the MCP contribution is based on the disadvantages of previous con-
tributions, which mainly rely on the task progress rate to predict stragglers, inappro-
priate reaction on input data skews scenarios, unstable cost comparison between the
backup and ongoing straggler task, etc. Evaluation experiments on a small-cluster
infrastructure show MCP to have 39% faster completion time and 44% improved
throughput when compared to default Hadoop.

In [107], authors propose an optimized speculative execution algorithm that is
oriented to solving a single-job problem in MapReduce. The advantage of this work
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is that takes into account two cluster scenario, heavy and lightly loaded case. For the
lightly loaded cluster, authors introduce two different speculative execution policies,
early cloning, and later speculative execution based on the task progress rate. During
the stage of heavily loaded cluster, the intuition is to use a later backup task. In
this case, an Enhanced Speculative Execution (ESE) algorithm is proposed, which
basically extends the work of [18]. Same authors have also introduced an additional
extended work that assumes to work for multiple MapReduce jobs [108].

An important project related to Hadoop’s omission failures is presented in [37].
In this work, authors have tried to build separate fault tolerance thresholds in the
UpRight library for omission and commission failures, because omission failures are
likely to be more common than commission failures. As we have mentioned before,
during omission failures, a process fails to send or receive messages specified by the
protocol. Commission failures exclude omission failures, including the failures upon
which a process sends a message not specified by the protocol. Therefore, in the case
of omission failures, the library can be fine-tuned in order to provide the liveness
property (meaning that the system is “up”) despite any number of omission failures.

The TaskTracker omission failures have also been addresses in some of the previous
works we have mentioned [40, 38].

3.2.3 Arbitrary (byzantine) failure

The work discussing the omission failures in [37], is actually a wider review that in-
cludes the byzantine failures in general. The main properties upon which the UpRight
library is based are:

• An UpRight system is safe (“right”) despite r commission failures and any num-
ber of omission failures.

• An UpRight system is safe and eventually live (“up”) during sufficiently long
synchronous intervals when there are at the most u failures of which at most r
are commission failures and the rest are omission failures.

The contribution of this paper is to establish byzantine fault tolerance as a vi-
able alternative to crash fault tolerance for at least some cluster services rather than
any individual technique. As authors say, much of their work involved making exist-
ing ideas fit well together, rather than presenting something new. Additionally, the
performance is a secondary concern, with no claim that all cluster services can get
low-cost BFT (byzantine fault tolerance).

The main goal of the work presented in [40] is to represent a BFT MapReduce
runtime system that tolerates faults that corrupt the results of computation of tasks,
such as the cases of DRAM and CPU errors/faults. These last ones cannot be detected
using checksums and often do not crash the task they affect, but can only silently
corrupt the result of a task. Because of this, they have to be detected and their
effects masked by executing each task more than once. This BFT MapReduce follows
the approach of executing each task more than once, but in particular circumstances.
However, as the state machine approach requires 3f+1 replicas to tolerate at the most
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f faulty replicas, which gives a minimum of 4 copies of each task, this implementation
uses several mechanisms to minimize both the number of copies of tasks executed and
the time needed to execute them. In case there is a fault, from the evaluation results,
it is confirmed that the cost of this solution is close to the cost of executing the
job twice, instead of 3 times as the naive solution. Authors argue that this cost is
acceptable for critical applications that require high level of fault tolerance. They
introduce an adaptable approach for multi-cloud environments in [39].

In [106], authors propose another solution for commission failures called Account-
able MapReduce. This proposal forces each machine in the cluster to be responsible
for its behavior, by means of setting a group of auditors that perform an accountabil-
ity test that checks the live nodes. This is done in real time, with the aim of detecting
the malicious nodes.

3.2.4 Network failure

During a network failure, many nodes leave the Hadoop cluster; this issue has been
discussed in different publications [72, 98, 36, 74], although for particular environ-
ments.

The work presented in [72] introduces a new kind of implementation environment
of MapReduce called MOON, which is MapReduce on Opportunistic eNvironments.
This MapReduce implementation has most of the resources coming from volunteer
computing systems that form a Desktop Grid. In order to solve the resource un-
availability, which is vulnerable to network failure, MOON supplements a volunteer
computing system with a small number of dedicated compute resources. These ded-
icated resources keep a replica in order to enhance high reliability, maintaining the
most important daemons, including the JobTracker. To enforce its design architec-
ture, MOON differentiates files into reliable and opportunistic. Reliable files should
not be lost under any circumstances. In contrast, opportunistic files are transient
data that can tolerate some level of unavailability. It is normal to assume that re-
liable files have priority for being kept in dedicated computers, while opportunistic
files are saved in these resources only when possible. In a similar way, this separation
is also managed for read and write requests. MOON is very flexible in adjusting
these features, based on the Quality of Service (QoS) needs. A reason for this is the
introduction of a hibernate state and hybrid task scheduling. The hibernate state is
an intermediate state whose main duty is to avoid having an expiry interval that is
too long or short, which can incorrectly consider a worker node as dead or alive. A
worker node enters in this state earlier than its expiry interval, and as a consequence
it will not be supplied with further requests from clients. MOON changes the specu-
lative execution mechanism by differentiating straggler tasks in frozen and slow lists
of tasks, adjusting their execution based on the suspension interval, which is signif-
icantly smaller than the expiry interval. An important change to speculating tasks
is their progress score, which divides the job into normal or homestretch. During
the normal phase, a task is speculatively executed according to the default Hadoop
framework; in a homestretch phase, a job is considered to have advanced toward its
completion, therefore MOON tries to maintain more running copies of straggler tasks.
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A later project similar to MOON is presented in [98]. Here, authors try to present
a complete runtime environment to execute MapReduce applications on a Desktop
Grid. The MapReduce programming model is implemented on top of an open source
middleware, called BitDew [49], extending it with three main additional software com-
ponents: the MapReduce Master, MapReduce worker programs and the MapReduce
library (and several functions written by the user for their particular MapReduce
application). Authors wanted to benefit from the BitDew basic services, in order to
provide highly needed features in Internet Desktop Grid, such as “massive fault toler-
ance, replica management, barriers free execution, and latency-hiding optimization,
as well as distributed result checking”. The last point (distributed checking) is par-
ticularly interesting, knowing that result certification is very difficult for intermediate
results which might be very large to send for verification on the server side. The
introduced framework implements majority voting heuristics, even though it involves
larger redundant computation.

The works presented in [36, 74] are related to cloud environments, with partic-
ular emphasis on Amazon cloud. They discuss the MapReduce implementation on
environments consisting of Spot Instances (SIs)3

In [36], a simple model has been represented. This model calculates the n-step
probability, the expected lifetime of a VM, and the cost of termination, that is, the
amount of time lost compared to having the set of machines stay up until completion
of the job. Using the spot instances, in cases when there is no fault, the completion
time may be speed up. Otherwise, if there are failures, the job completion time may
be longer than without using spot instances.

[74] is a more mature proposal than the previous work. Here authors have tried
to prove that their implementation, called Spot Cloud MapReduce, can take full
advantage of the spot market, proposed by Amazon WS. As the name suggests, this
implementation has been built on top of Cloud MapReduce (CMR), with additional
changes:

• Modifying the split message format in the input queues (adding a parameter
which indicates the position in the file where the processing should start).

• Saving the intermediate work when a node is terminated.

• Changing the commit mechanism to perform a partial commit.

• Changing the way CMR determines the successful commit for a map split (elect-
ing a set of commit messages that is one more than the last key-value pair’s
offset).

The experimental evaluation shows that Spot CMR can work well in the spot
market environment, significantly reducing cost by leveraging spot pricing.

3Spot instances are virtual machines resources in Amazon Web Services (WS), for which a user
defines a maximum biding price that he/she is willing to pay. If there is no concurrence, the prices
are lower and the possibility of using them is higher. But when the demand is higher, then Amazon
WS has the right to stop your spot instances. If the spot instances are stopped by Amazon, the user
does not pay, otherwise if the user decides to stop them before completing the normal hour, the user
is obliged to pay for that consumption.
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3.2.5 Security failure

The security concept is basically the absence of unauthorized access to, or handling
of, system state [24]. This means that, authentication, authorization and auditing go
hand in hand, in order to ensure a system security. Whereas authentication refers
to the initial identification of the user, the authorization determines the user rights,
after he or she has entered into the system. Finally, the audit process represents an
official user inspection (monitoring) to check if the user behaves according to its role.
In other words, we could equate these terms with the pronouns who (authentication),
what (authorization), and when (audit).

MapReduce’s security in Hadoop is strictly linked to the security of HDFS; as the
overall Hadoop security is grounded in HDFS, this means that other services including
MapReduce store their state in HDFS. While Google’s MapReduce does not make
any assumption on security [42], early versions of Hadoop assumed that HDFS and
MapReduce clusters would be used by a group of cooperating users within a secure
environment. Furthermore, any access restriction was designed to prevent unintended
operations that could cause accidental data loss, rather than to prevent unauthorized
data access [105, 73].

The basic security definitions that include authentication, authorization and au-
diting, were not present in Hadoop from the beginning. The authorization (managing
user permissions) had been partially implemented. The auditing took place in the ver-
sion 0.20 of Hadoop. The authentication was the last one, which came with Kerberos,
an open-source network authentication protocol.

A user needs to be authenticated by the JobTracker before submitting, modifying
or killing any job. Since Kerberos authentication is bi-directional, even the Job-
Tracker authenticates itself to the user; in this way, the user will be assured that the
JobTracker is reliable. Additionally, each task is seen as an individual user, due to
the fact that tasks now are run from the client perspective, the one which submitted
the job, and not from the TaskTracker owner. In addition, the JobTracker’s directory
is not readable and writable by everyone as it happens with the task’s working di-
rectories. During the authentication process, each user is given a token (also called a
ticket) to authenticate once and pass credentials to all the tasks of a job; the token’s
default lifetime is meant to be around 8 hours. While the NameNode creates these
tokens, the JobTracker manages a token’s renewal; token expiration is reasonably
JobTracker dependent, in order not to expire prematurely for long running jobs.

At the same year when Kerberos was implemented in Hadoop, another proposal
called Airavat [92] tried to ensure security and privacy for MapReduce computations
on sensitive data. This work is an integration of mandatory access control (MAC) and
differential privacy. MAC’s duty is to assign security attributes to system resources, to
constrain the interaction of subject with objects (e.g., subject can be a process, object
can be a simple file). On the other side, differential privacy is a methodology which
ensures that the aggregated computations maintain the integrity of each individual
input. The evaluation of Airavat on several case studies shows flexibility in the
maintenance of both accurate and private-preserving answers on runtimes within
32% of the default Hadoop’s MapReduce.
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Apart from the different improvements in Hadoop security[2, 105], the work for
preventing the Hadoop cluster from eavesdropping failures, has been slow. The ex-
planation from the Hadoop community was that encryption is expensive in terms of
CPU and I/O speed [96].

At the beginning, the encryption over the wire was dedicated only to some socket
connections. In the case of Remote Procedure Call (RPC), an important protocol for
communication between daemons in MapReduce, its encryption was added only after
the main security improvement in Hadoop (by integrating Kerberos [8]). Most of the
other encryption improvements (for instance, the shuffle phase encryption) came in a
very recent Hadoop version [1], taking into consideration that Hadoop clusters may
also hold sensitive information.

3.2.6 Apache Hadoop reliability

Since its appearance in 2006, Apache Hadoop has undergone many releases [7]. Each
of them has tried to improve different features of previous version, including fault
tolerance. Table 3.1 shows Apache Hadoop 1.0 fault tolerance patches in a tree-like
form, from the first Apache Hadoop 1.0 release (0.1.0) until release 1.2.1 which is
the latest stable release up to the time of writing. These upgrades have played an
important role in the later Hadoop evolution. An example of this is the introduction of
speculative execution for reduce tasks, which caused many bugs in the previous days
of its implementation. Therefore, the overall speculative execution mechanism was
turned off by default later on, due to bugs in the framework. Actually the speculative
execution mechanism was removed for some period, and later on, placed once again
in the default functioning of the Apache Hadoop.

Year Release Patch
2006 0.1.0 The first release

0.2.0 Avoid task re-run where it has previously failed (142); Don’t
fail reduce for a map impossibility allocation (169, 182); Five
client attempts to JT before aborting a job (174); Improved
heartbeat (186)

0.3.0 Retry a single fail read, to not cause a failure task (311)
0.7.0 Keep-alive reports, changed to seconds [10] rather than

records [100] (556); Introduced killed state, to distinguish
from failure state (560); Improved failure reporting (568); Ig-
nore heartbeats from stale TTs (506)

0.8.0 Make DFS heartbeats configurable (514); Re-execute failed
tasks first (578)

0.9.0 Introducing speculative reduce (76)
0.9.2 Turn off speculative execution (827)

2007 0.10.0 Fully remove killed tasks (782)
0.11.0 Add support for backup NNs, to get snapshotting (227, 959);

Rack awareness added in HDFS (692)
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Year Release Patch
0.12.0 Change mapreduce.task.timeout to be per-job based (491);

Make replication computation as a separate thread, to im-
prove heartbeat in HDFS’s NN (923); Stop assigning tasks to
a dead TT (654)

0.13.0 Distinguish between failed and killed task (1050); If nr of
reduce tasks is zero, map output is written directly in HDFS
(1216); Improve blacklisting of TTs from JTs (1278); Make
TT expiry interval configurable (1276)

0.14.0 Re-enable speculation execution by default (1336); Timed-out
tasks counted as failures rather than killed (1472)

0.15.0 Add metrics for failed tasks (1610)
2008 0.16.0 File permissions improvements (2336, 1298, 1873, 2659, 2431);

Fine-grain control over speculative execution for map and re-
duce phase (2131); Heartbeat and task even queries interval,
dependent on cluster size (1900); NN performance degrada-
tion from large heartbeat interval (2576)

0.18.0 Completed map tasks should not fail if nr of reduce tasks is
zero (1318)

0.19.0 Introducing job recovery when JT restarts (3245); Add Fail-
Mon for hardware monitoring and analysis (3585)

2009 0.20.0 Improved blacklisting strategy (4305); Add test for injecting
random failures of a task or a TT (4399); Fix heartbeating
(4785, 4869); Fix JT (5338, 5337, 5394)

2010 0.20.202.0
(unre-
leased)

Change blacklist strategy (1966, 1342, 682); Greedily schedule
failed tasks to cause early job failure (339); Fix speculative
execution (1682); Add metrics to track nr of heartbeats by
the JT (1680, 1103); Kerberos

2011 0.20.204.0 TT should handle disk failures by reinitializing itself (2413)
0.20.205.0 Use a bidirectional heartbeat to detect stuck pipeline (724);

Kerberos improvements
2012 1.0.2 A single failed name dir can cause the NN to exit (2702)

1.1.0 Lower minimum heartbeat between TT and JT for smaller
clusters (1906)

2013 1.2.0 Looking for speculative tasks is very expensive in 1.x (4499)
1.2.1 The last stable release

Table 3.1: Apache Hadoop 1.0: timeline of its fault tolerance patches

The Hadoop community was very active at the beginning, but this changed dras-
tically through the years. A crucial reason for this was the existence of parallel
projects, which tested new proposed features, but that were in their early phases
(alpha or beta). Finally, a new release, Apache Hadoop 2.0, widely known as Hadoop
YARN, was created. Table 3.2 shows Apache Hadoop 2.0 fault tolerance patches in
a tree-like form, from the first Apache Hadoop 2.0 release (0.23.0) until release 2.7.1,
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which is the latest stable release up to the time of writing.

Year Release Patch
2011 0.23.0 The first release; Lower minimum heartbeat interval for Task-

Tracker (MR-1906); Recovery of MR AM from failures (MR-
279); Improve checkpoint performance (HDFS-1458)

2012 0.23.1 NM disk-failures handling (MR-3121); MR AM improve-
ments: job progress calculations (MR-3568), heartbeat in-
terval (MR-3718), node blacklisting (MR-3339, MR-3460),
speculative execution (MR-3404); Active nodes list versus un-
healthy nodes on the webUI and metrics (MR-3760)

0.23.3 Timeout for Hftp connections (HDFS-3166); Hung tasks time-
out (MR-4089); AM Recovery improvement (MR-4128)

0.23.5 Fetch failures versus map restart (MR-4772); Speculation +
Fetch failures versus hung job (MR-4425); INFO messages
quantity on AM to RM heartbeat (MR-4517)

2.0.0-
alpha

NN HA improvements: fencing framework (HDFS-2179), ac-
tive and standy states (HDFS-1974), failover (HDFS-1973),
standbyNode checkpoints (HDFS-2291, HDFS-2924), NN
health check (HDFS-3027), HA Service Protocol Interface
(HADOOP-7455), in standby mode, client failing back and
forth with sleeps (HADOOP-7896); haadmin with config-
urable timeouts for failover commands (HADOOP-8236)

2.0.2-
alpha

Encrypted shuffle (MR-4417); MR AM action on node health
status changes (MR-3921); Automatic failover support for NN
HA (HDFS-3042)

2013 0.23.6 AM timing out during job commit (MR-4813)
2.0.3-
alpha

Stale DNs for writes (HDFS-3912); Replication for appended
block (HDFS-4022); QJM for HDFS HA for NN (HDFS-3901,
HDFS-3915, HDFS-3906); Kerberos issues (HADOOP-9054,
HADOOP-8883, HADOOP-9070)

2.1.0-
beta

Reliable heartbeats between NN and DNs with LDAP (HDFS-
4222); Tight DN heartbeat loop (HDFS-4656); Snapshots
replication (HDFS-4078); Flatten NodeHeartbeatResponse
(YARN-439); NM heartbeat handling versus scheduler event
cause (YARN-365); NMTokens improvements (YARN-714,
YARN-692); Resource blacklisting for Fifo scheduler (YARN-
877); NM heartbeat processing versus completed containers
tracking (YARN-101); AMRMClientAsync heartbeating ver-
sus RM shutdown request (YARN-763); Optimize job moni-
toring and STRESS mode versus faster job submission. (MR-
3787); Timeout for the job.end.notification.url (MR-5066)
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Year Release Patch
2.1.1-
beta

RM failure if the expiry interval is less than node-heartbeat
interval (YARN-1083); AMRMClient resource blacklisting
(YARN-771); AMRMClientAsync heartbeat versus runtime
exception (YARN-994); RM versus killed application track-
ing URL (YARN-337); MR AM recovery for map-only jobs
(MR-5468)

2.2.0 MR job hang versus node-blacklisting feature in RM requests
(MR-5489); Improved MR speculation, with aggressive spec-
ulations (MR-5533); SASL-authenticated ZooKeeper in Ac-
tiveStandbyElector (HADOOP-8315)

2014 2.3.0 SecondaryNN versus cache pools checkpointing (HDFS-5845);
Add admin support for HA operations (YARN-1068); Added
embedded leader election in RM (YARN-1029); Support
blacklisting in the Fair scheduler (YARN-1333); Configura-
tion to support multiple RMs (YARN-1232)

2.4.0 DN heartbeat stucks in tight loop (HDFS-5922); Standby
checkpoints block concurrent readers (HDFS-5064); Make
replication queue initialization asynchronous (HDFS-5496);
Automatic failover support for NN HA (HDFS-3042)

2.4.1 Killing task causes ERROR state job (MR-5835)
2.5.0 NM Recovery. Auxiliary service support (YARN-1757);

Wrong elapsed time for unstarted failed tasks (YARN-1845);
S3 server-side encryption (HADOOP-10568); Kerberos inte-
gration for YARN’s timeline store (YARN-2247, HADOOP-
10683, HADOOP-10702)

2.6.0 Encryption for hftp. (HDFS-7138); Optimize HDFS En-
crypted Transport performance (HDFS-6606); FS input
streams do not timeout (HDFS-7005); Transparent data at
rest encryption (HDFS-6134); Operating secure DN without
requiring root access (HDFS-2856); Work-preserving restarts
of RM (YARN-556); Container-preserving restart of NM
(YARN-1336); Changed NM to not kill containers on NM
resync if RM work-preserving restart is enabled (YARN-
1367); Recover applications upon NM restart (YARN-1354);
Recover containers upon NM restart (YARN-1337); Recover
NMTokens and container tokens upon NM restart (YARN-
1341, YARN-1342); Time threshold for RM to wait before
starting container allocations after restart/failover (YARN-
2001); Handle app-recovery failures gracefully (YARN-2010);
Fixed RM to load HA configs correctly before Kerberos login
(YARN-2805); RM causing apps to hang when the user kill
request races with AM finish (YARN-2853)
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Year Release Patch
2.6.1 (un-
released)

Make MR AM resync with RM in case of work-preserving
RM-restart (MR-5910); Support for encrypting Intermediate
data and spills in local filesystem. (MR-5890); Wrong reduce
task progress if map output is compressed (MR-5958)

2015 2.7.0 Block reports process during checkpointing on standby NN
(HDFS-7097); DN heartbeat to Active NN may be blocked
and expire if connection to Standby NN continues to time
out (HDFS-7704); Active NN and standby NN have dif-
ferent live nodes (HDFS-7009); Expose Container resource
information from NM for monitoring (YARN-3022); AM-
RMClientAsync missing blacklist addition and removal func-
tionality (YARN-1723); NM fail to start with NPE during
container recovery (YARN-2816); Fixed potential deadlock
in RMStateStore (YARN-2946); NodeStatusUpdater cannot
send already-sent completed container statuses on heartbeat
(YARN-2997); Connection timeouts to NMs are retried at
multiple levels (YARN-3238); Add configuration for MR spec-
ulative execution in MR2 (MR-6143); Configurable timeout
between YARNRunner terminate the application and force-
fully kill (MR-6263); Make connection timeout configurable
in s3a. (HADOOP-11521)

2.7.1 The last stable release

Table 3.2: Apache Hadoop 2.0: timeline of its fault tolerance patches

3.3 Resource efficiency in data-intensive processing
frameworks

There are many contributions on data-intensive frameworks, whose goal is optimizing
the MapReduce framework from different viewpoints. According to the title, at first,
this section seems to be very narrow. We consider resource-efficient contributions all
the state-of-the-art contributions which have tried to improve the resource utilization,
but have maintained the completion time performance. However, there are other
contributions of the state of the art, that have used additional resources in order to
improve the completion time. This means that they have not really improved the
resource utilization, because their priority has been the completion time. We also
describe these approaches.

Most of these proposals belong to the area of improving the scheduling methodol-
ogy with respect to data locality, dynamic resource allocation, autonomic parameters
configuration, etc. Intentionally, we have not mentioned any contribution related to
power efficiency. This is because our contributions have no direct connection with
energy efficiency metrics, apart from side-effects of resource optimizations.
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3.3.1 Data locality

In high performance computing environments, it is well known that computation takes
the main role in the resolution of scientific problems. However, in data-intensive com-
puting, the priority is given to data. Therefore, data-intensive processing framework
usually transfer computations near the data in order to increase the throughput. In
this way, data-intensive frameworks try to take advantage of data locality.

Among the first contributions in this direction is Quincy [63], which is a novel
framework that addresses scheduling problems in environments where concurrent dis-
tributed jobs are norm. In order to do this, Quincy uses a min-cost flow network,
where the edge weights encode the data locality issues and fair sharing, among others.
Through evaluation experiments on a medium sized cluster infrastructure, authors
have achieved to confirm Quincy as a good alternative when compared to the state
of the art (mainly greedy algorithms), in terms of performance.

The contribution [110] works on the hypothesis of what to do when we have a
shared Hadoop cluster between multiple users with different jobs over a common
dataset. Authors present an algorithm called delay scheduling, which tries to com-
bine two different features, fairness sharing and data locality, considering fairness
sharing as the capability of a scheduler for distributing its resources among users (or
workloads) in a fair manner (equally).

When the first concept of fair sharing is strictly followed, two problems appear:

• Head-of-line-scheduling, that is, very small jobs almost never consume data
locality.

• Sticky slots, that is, when a cluster has large jobs, there is a tendency that a
job uses the same slots repeatedly.

The delay scheduling algorithm proposes that a job waits for a limited amount
of time, in order to get a node that has its data. Authors prove experimentally
that by enabling this delay, they could bring locality close to 100%. Another crucial
contribution to this paper is the Hadoop fair scheduler (HFS), which is based on
the delay scheduling algorithm. HFS works on the principle of two-level scheduling
hierarchy. At the top, it divides slots among pools by using weighted fair sharing. At
the bottom, each user pool could allocate its slots with either FIFO or Fair sharing. In
order to do task balancing, authors suggest to consider all jobs as long-task jobs, but
change their status as short-task jobs if needed. Another issue are hot spots, which
is the important data accessed by many users. Authors propose a kind of dynamic
replication of these small, but hot files.

Another proposal called MapReduce Task Scheduler for Deadline Constraints
(MTSD) algorithm that is also related to data locality issue is presented in [100].
The MSTD is actually composed of a node classification algorithm, whose aim is to
improve the data locality of mappers and predict the remaining task execution time.
These two modules are capable of allowing any user to specify a job request deadline
and finishing its execution before the given deadline. It works on the principle of
making different sets of nodes based on their performance, dynamically distributing
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the workload on nodes with better performance, and estimating the remaining task
progress rate for these respective nodes. According to the evaluation experiments,
MTSD improves the data locality in comparison to the state of the art, demonstrates
capability of meeting deadline constraints, and even improves the estimation of re-
maining task progress rate.

3.3.2 Dynamic resource allocation

A particular contribution related to hot files is Scarlett [14]. This paper addresses
the problem of popular content in MapReduce, which may become a bottleneck when
many users or jobs access its data concurrently. Due to this, authors present a
novel approach called Scarlett, which replicates MapReduce input data, based on
their access patterns. In addition, Scarlett distributes this data among machines and
clusters, in order to avoid centralized hotspots. Production load analysis has enabled
important lessons, such as knowing that concurrent access is an important metric to
evaluate file popularity, or that larger files have the highest access number, etc.

Scarlett is based on two design choices:

• It replicates data on file granularity.

• It replicates these files based on predicted popularity.

In order to do this, it uses previous usage statistics, while the prediction is based
on the most recent past (from 12h to 24h), and always considering the submitted
jobs for execution in the queue. In order to minimize interference with running jobs,
Scarlett puts a boundary of 10% as extra storage budget, which according to the
experiments shows near to optimal results. Scarlett has an ability to replicate data
lazily, by equally spreading replication traffic among machines of different rack4, and
using data compression as a good tradeoff between data processing (computational
overhead) and network bandwidth. Simulations and experiments that are done in two
MapReduce frameworks, Hadoop and Dryad, show that Scarlett removes efficiently
hotspots and improves the job completion time by 20.2%, with 10% of extra storage
and additional 1% of network resources.

In [64], an optimization system called Manimal was introduced. This system
analyzes MapReduce programs by applying appropriate data-aware optimizations.
The benefit of this best-effort system is that achieves to speedup these programs in
an autonomic way, without human intervention.

FlexSlot [58] is a contribution to resize map slots of a workload and deliver addi-
tional slots, if needed, in order to improve the job execution time.

In [99], authors introduce DynamicMR, whose main contribution is to relax the
slot allocation constraint between mappers and reducers, and modify the speculative
execution mechanism in order to improve the performance efficiency. DynamicMR
also addresses the data locality problem by scheduling slots in advance.

4While replicating, Scarlett reads from many sources.
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In [71], authors introduce MRONLINE, which is able to configure relevant param-
eters of MapReduce online, by collecting previous statistics, and predicting the task
configuration in fine-grain level.

[95] introduces MROrchestrator, whose main contribution is to dynamically detect
resource bottlenecks, and according to this measurements, it can reallocate dynamic
slot resources among workloads.

An automatic optimization of the MapReduce programs has been proposed in [25].
In this work, authors provide out of-the-box performance for MapReduce programs
that need to be run using as input large datasets.

Cura [85] automatically creates an optimal cluster configuration for MapReduce
jobs, by means of the framework profiling, reaching global resource optimization. In
addition, Cura introduces a secure instant VM allocation to reduce the response time
for the short jobs. Finally, it applies other resource management techniques such as
cost-aware resource provisioning, VMaware scheduling and online VM reconfiguration.
Overall, these techniques lead to enhance the response time and reduce the resource
cost.

There are other optimizations which have been proposed from the database point
of view, by optimizing the MapReduce queries [13], [50], or lower level optimizations,
such as compiler optimizations [76].

3.4 Summary

As stated in this chapter, the MapReduce model has triggered many viewpoints from
different communities. We have discussed the most relevant proposals for optimizing
data-intensive frameworks reliability and resource efficiency. Many angles of these
topics have been covered by the state of the art. However, as we described in Chapter
1, there are still many relevant research questions to be solved.

Among others, there is little work which has been dedicated to failure detection
in MapReduce-based systems. Indeed, as far as we know, there is not any contribu-
tions which addresses a complete and heterogeneous infrastructure, covering different
application profiles. Instead, every work establishes its own assumptions, solving this
issue mainly by suspecting the slow tasks or doubling the entire set of tasks, whereas
maintaining the static timeout. Being aware that a static timeout can jeopardize the
workload performance of most requests, we define a general failure detector model,
missing in the literature at the time of writing. Concretely we propose three funda-
mental modules, according to the time heterogeneity, that is, how much relaxation the
system is capable to allow in detecting an omission failure. The first module leaves
the static timeout for large jobs, adjusting the timeout for short jobs to the estima-
tion of the job completion time. The second module adjusts dynamically the timeout,
according to the progress score. The third module is oriented to deadline-bounded
workloads, considering the timeout for the workers as an additional parameter.

Secondly, after analyzing the state-of-the-art methodologies for solving the single
points of failure of MapReduce-based frameworks, we conclude that the transition
from MapReduce 1.0 to MapReduce 2.0 did not solve this issue, except transforming
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the problem nature from coarse-grained into fine-grained. Namely, the problems of
scalability and fault tolerance of the JobTracker of the classic Hadoop version have
given way to single points of failure in other entities of YARN, such as the resource
scheduler, the application manager or the application master. The other proposed
research alternatives did not solve either this problem. Due to this, we introduce
an alternative solution to the single point of failure in these frameworks in order to
increase the reliability of these systems.

Finally, taking into account the increase of resources needed for enhancing the reli-
ability of MapReduce-based systems, we deal with the optimization of the intersection
between reliability and resource efficiency of data-intensive computing systems. Par-
ticularly, we optimize the resource allocation at the container level of MapReduce
systems. A container is an encapsulation of a subset of computing resources, placed
on a single node of a cluster. A considerable amount of cloud solutions, not only
MapReduce-based clouds, are using currently containers as resource allocation facil-
ity. Our approach allocates the amount of resources needed by a specific container,
depending on several parameters, such as the real-time request input, the number of
requests, the number of users and the dynamic constraints of the system infrastruc-
ture, such as the set of resources available.

These three research lines and their corresponding approaches outperform the ex-
isting solutions, as we will demonstrate in the next section related to the contributions
of the thesis.
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Part III

Contributions





Chapter 4

Formalization of the failure detector
abstraction in MapReduce

4.1 Introduction

In dependability terms, an omission failure is a more general kind of failure. This
happens when a process does not send (or receive) a message that it is supposed to
send (or receive).

In asynchronous computing systems, in order to detect and marginalize the impact
of slow processes, any framework needs to consider the failure detector abstraction
[30]. Failure detectors are abstract devices that offer information about the oper-
ational status of processes in a distributed system. It is believed that the failure
detector abstraction is fundamental and should sit as a first-class citizen library on
any distributed computing framework. Additionally, failure detectors are important
because of the possibility to classify problems in distributed computing [51].

Failures are often detected by using either static or dynamic timeout service,
which is enforced by using a heartbeat mechanism. The static way is understood as
tuning the timeout parameter when starting the job and not changing it until the
job execution completes. It is well known that a static timeout value applicable to
any application, infrastructure or networking environment does not exist [89]. This
is due to its limitations: firstly, that value is not applicable to all the scenarios, and
secondly, even if the timeout value would have been chosen well at the beginning, the
application, infrastructure and the networking environment may suffer changes (e.g.
failures, delays, etc.).

Failure detectors may be divided in perfect or eventual. Perfect detectors may
report some process to have crashed, immediately with the first signs of unrespon-
siveness, while the eventual detectors report a level of suspect. In failure detection,
there are two metrics that provide the correctness of the mechanism [33]: (i) Com-
pleteness, which requires that a heartbeat-based detector eventually suspects every
process (task) that actually crashes; and (ii) Accuracy, which restricts the mistakes
that a heartbeat-based detector can make.

In MapReduce terms, omission failures are synonym for stragglers. Indeed, the
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concept of stragglers is very important in the MapReduce community, especially task
stragglers, which could jeopardize the job completion time. When MapReduce is
deployed on a large-scale infrastructure, consisting of commodity machines, it is better
to work on the assumption that stragglers are more than a norm, appearing in huge
numbers. Typically, the main cause of a MapReduce straggler task is a slow node,
network overload and input data skew [18].

Currently, a static timeout based mechanism is applied for detecting fail-stop
failure by checking the expiry time of the last received heartbeat from a certain
machine. In Hadoop, each worker sends a heartbeat every 3 seconds, the master checks
every 200 seconds the expiry time of the last reported heartbeat. If no heartbeat is
received from a machine for 600 seconds, then this machine will be labeled as a
failed machine and therefore the master will trigger the failure handling and recovery
process. However, some studies have reported that the current static timeout detector
is not effective and may cause long and unpredictable latency [44, 45]. Our studies in
[77] report that, in the presence of single machine failure the applications’ latencies
vary not only in accordance to the occupancy time of the failure, similar to [45], but
also vary with the job length (short or long).

An additional important factor is the non-uniformity of straggler tasks. If we
assume that a cloud infrastructure implements a shared Hadoop [11] cluster, it is
very possible that some user may be willing to run a CPU heavy job request. If its
workload is large, it may need many virtualized tasks, spread among many machines.
If other users are running different tasks on these machines, at some point in time,
the cluster will have a large number of dynamic stragglers. To worsen the scenario,
the percentage of stragglers could be the majority set of job tasks (in meaning, the
stragglers number is bigger than or equal to the number of normal tasks). In this
case, it is unlikely that a speculative execution could work well, because it would
starve cloud resources.

Let us explain the failure timeout problem with an example shown in Figure 4-1.

Case 4-1a. We consider a single task T 1
1 (subscript is the task number, whereas

superscript is the job number) of job J1 to start on a worker m at time to1. If a
worker crashes at time tf , according to its progress score, the task T 1

1 is assumed to
have finished around 70% of the load at time tf . However, after the failure, a task
will need to wait 10 minutes of the arranged timeout to finish in time tr, and not a
time te1. Clearly, te1 is proportional to the 30% left of the missing load in this case,
and obviously less than a 10 minutes timeout.

Case 4-1b. We consider two uniform tasks, T 1
1 and T 2

1 of different jobs, J1 and J2
respectively, to start on a single worker m at the same time to1. If a worker crashes
at time tf , both T 1

1 and T 2
1 will enforce their respective jobs to wait the 10 minutes

timeout, and consequently, to prolong their completion time equally, from te1 into tr.

Case 4-1c. We consider two uniform tasks, T 1
1 and T 2

1 of different jobs, J1 and
J2 respectively, to start on a single worker m, but at different times (to1, and to2,
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(d) Non-uniform tasks start at different time.

Figure 4-1: Assumed timeout reaction to different task scenarios.

respectively). If a worker crashes at time tf , both tasks will cause their respective
jobs to respect the 10 minutes timeout, and both prolong their completion time
equally, from different te1 and te2 into tr. If we analyze in more detail the start time
of these uniform tasks, it is clear that T 1

1 has started earlier than T 2
1 , which normally

would have finished earlier at time te1. But the present timeout adjustment harms
the T 1

1 equally as T 2
1 , by giving advantage to the second task T 2

1 , which is not fair.

Case 4-1d. We consider two non-uniform tasks, T 1
1 and T 2

1 of different jobs, J1
and J2 respectively, to start on a single worker m, and at different times (to1, and to2,
respectively). If a worker crashes at time tf , both tasks will cause their respective jobs
to respect the 10 minutes timeout, and both prolong their completion time equally,
from te1 and te2 into tr, as previously. If we analyze in more detail the start time
of these non-uniform tasks, it is clear that T 1

1 has started earlier (to1) than T 2
1 (to2).

However, T 2
1 is shorter, and normally it should have finished earlier at time te2. But

the present timeout adjustment harms the T 2
1 more than T 1

1 , by giving advantage to
the first task T 1

1 , which is not fair again.
The static timeout implemented in MapReduce, is not capable to address any

of the cases above. An accurate timeout detector is important not only to improve
application’s latency but also to improve resource utilization, especially in the Cloud
where we pay for the resources we use. Therefore, we state that a significant potential
exists for performance improvement in applications, particularly MapReduce appli-
cations, when choosing the appropriate timeout failure detector. We believe that a
new methodology to adaptively tune the timeout detector can significantly improve
the overall performance of the applications, regardless of their execution environment.
Every MapReduce job should and can have its proper timeout, because only this is
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the proper way of detecting failures in real time.
If stragglers do not affect the time completion in a strong way, a possible proposal

in this case would be to dynamically relax the timeout for jobs whose priority is
low, and let them run. Another solution to this problem could be diverting priority
jobs/users to dedicated machines with no other tasks on them. In this way, if CPU
jobs need heavy computations, then you do not run other heavy CPU jobs therein.
And the same is possible for memory or I/O jobs. Therefore, if a fault-tolerant
abstraction (more precisely, a failure detector abstraction) is deployed for this case,
it should consider that different tasks are run in most of the machines, and not all
the tasks are the same, in meaning that some tasks are executed in bigger containers,
and others need smaller containers. However, dedicated nodes are not an optimal
solution, because they will be used for a specific set of job requests and stay idle for
other different requests.

As we notice in the Chapter 3, as far as we know, none of the contributions
covers a heterogeneous and complete infrastructure, but every work establishes its own
assumptions. This is due to the difficulty of modeling a framework for an environment
with strictly dynamic requirements. In the same way, we propose three fundamental
modules, namely HR-FD (High Relax Failure Detector), MR-FD (Medium Relax
Failure Detector) and LR-FD (Low Relax Failure Detector), according to the time
heterogeneity, in other words, how much relaxation the system is capable to allow
in detecting an omission failure. Before this, we define a system model, upon which
these modules are based on.

4.2 System model

Our system model is an abstraction of a single MapReduce job in execution. We
consider that each MapReduce request is composed of NT limited number of identified
processes (slave tasks, worker tasks, or tasks) to complete. One of these processes is
the master process (leader process, master task, or master) TM , which controls the
other workers tasks TW . During each MapReduce request, the framework’s first duty
is to initiate the master process. The master ensures the failure detector execution
upon other slave processes. In this case, we consider that the master process is always
alive, and correct. In the Chapter 5, we study the case of failure handling of masters.
However, this is out of the scope of this contribution. Therefore, during the entire
job execution, there is no leader election or any other algorithm that executes in the
background to replace the master.

After master initiation from the application manager, the scheduler allocates NT−
1 slave processes. At any time t, a master monitors and coordinates a set of D number
of worker tasks (D ⊆ NT − 1), by ensuring and enforcing the correct functioning of
each worker task, until they finish the work partition it was assigned to them. During
the job execution, if a slave has terminated its task, the scheduler decides whether to
assign another task to the slave or terminate it; it is important to mention that, if a
slave process is assigned to run another task, it will have another unique id, particular
to the work partition upon which was executed on. After all the slaves have finished,
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Normal Suspected Result
∈ ∈ suspected \ {task}
∈ /∈ X
/∈ ∈ X
/∈ /∈ suspected ∪ {task}

Table 4.1: The probable task intersection between normal and suspected set.

Suspected Speculated Result
∈ ∈ X
∈ /∈ speculated ∪ {task}
/∈ ∈ −
/∈ /∈ X

Table 4.2: The probable task intersection between suspected and speculated set.

the master delivers the output to the application manager, which delivers the same
output in a readable form to the user, on behalf of the entire framework.

Unless explicitly stated otherwise, it is assumed that a cluster S consists of a lim-
ited amount of uniform computing machines n, that could execute a limited number
of concurrent processes. We consider that each failure detector algorithm is aware
and dependent on the timing assumptions, and not on the resource utilization. How-
ever, it is assumed that the more the algorithm relaxes its timeout, the less amount
of resources will be requested.

For example, we expect that HR failure detector uses less amount of resources and
lets many users concurrently respect or equally have the same infrastructure rights,
proportional to their requests. On the other side, the LR-FD algorithm is assumed
to request more resources, because the timing assumptions are stricter and therefore,
more speculative executions will be needed.

By default, we consider that none of the slave tasks is considered for speculation,
without its exclusion from the set of normal tasks. In other words, the failure detector
should rearrange the suspected task from the normal set into the suspected set. Only
after this, a task may get into the queue of tasks for speculation. All these possible
intersections are stated in Table 4.1 and Table 4.2. According to these results, the
failure detector mechanisms should react to two scenarios from Table 4.1, because the
other two scenarios belong to the normal functioning of the MapReduce framework.
If a task is included in both normal and suspected sets, this task should be deleted
from the suspected set. On the contrary, if a task is not included in any of these sets,
this should be added to the suspected set. Table 4.2 shows that only one scenario
requires a solution, namely, the case when a task belongs to the suspected set, but still
has not been speculated. In this case, the task should be added to the speculated set.
Two other scenarios (1 and 4) are completely correct, whereas the third scenario is
not possible, because the failure detector mechanism does not allow a task to directly
switch from the normal set to the speculated set, before being included into the set
of suspected tasks.
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Finally, we assume that our system model does not have network failures. This
implies that if we have an operation task, this accomplishes the heartbeat mechanism,
and if a task is non operational, the heartbeat will be missed. In other words, network
failures are out of the scope of this contribution.

4.3 High relax failure detector
In this module of the framework, called high relax failure detector (HR-FD), we
extend the default functioning of the MapReduce failure detector mechanism. Par-
ticularly, since the default timeout of Hadoop MapReduce has a static based timeout
mechanism of 10 minutes, we leave this value as it is, but only for large jobs, that is,
those ones whose completion time is above this value. For other jobs, whose comple-
tion time is below the value of 10 minutes, the timeout should be adjusted according
to the estimation of the job completion time.

In this way, the failure detector timeout will be fair to most of the user requests,
regardless of the other parameters. This statement agrees with the state-of-the-art
literature [68, 116, 45, 19, 16, 46], where it is stated that most large-scale MapReduce
clusters run small jobs.

As discussed in Table 4.1, any failure detector algorithm should have in mind that,
a normal task which is suspected, needs to exit from the normal set, and enter into
the suspected set of tasks. According to the possible alternatives, we could derive the
Algorithm 1.

Algorithm 1: A task evolution from normal to suspected and viceversa.
forall the task ∈ u do

if (task /∈ normal) ∧ (task /∈ suspected) then
suspected := suspected ∪ {task};
trigger(task, SUSPECT);

else if (task ∈ normal) ∧ (task ∈ suspected) then
suspected := suspected \ {task};
trigger(task, RESTORE);

end
end

For the task which are in the suspected set, it is necessary to find alternatives for
completing them. According to Table 4.2, a reasonable decision to make is speculating
the suspected task, as a form of not jeopardizing the completion time of the overall
job request. Algorithm 2 is used in this scenario. This algorithm is composed of a
loop for all the suspected tasks. This algorithm also takes into account the resources
available in the system. In particular, if a task is not speculated yet and there are
resources available in different nodes to the node in which the task has been scheduled,
the algorithm triggers this one as speculated.

A relevant question to solve in this scenario is the maximum number of spec-
ulations for a single suspected task. This could be taken into account by the Al-
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Algorithm 2: Speculating the suspection.
forall the task ∈ suspected do

if (task /∈ speculated) then
if (availableResources) ∧ (availableResources /∈ workertask ) then

speculated := speculated ∪ {task};
trigger(task, SPECULATE);

end
end

end

gorithm 2, substituting the sentence if(task /∈ speculated) by if(speculatedtask ≥
max_number_speculations). This follows the guidelines provided for instance by
[18], which suggests 2 as maximum number of speculations.

In addition, there may be nodes whose performance is causing general overhead
on its tasks. In this case, a reasonable reaction would be to consider those nodes as
harmful for future executions, and provide a solution to their suspected tasks. The
procedure in Algorithm 3 is an example of this scenario. In this case, we are not
allocating tasks to a node whose number of suspected tasks is equal or greater to 3.

Algorithm 3: Limiting the suspected task number in the same worker.
if (suspectedworker ≥ 3) then

lostworkers := lostworkers ∪ {suspectedworker};
trigger(suspectedworker, LOST);

end

From these algorithms, we have designed a complete one, called HR-FD, which
implements an eventual failure detector algorithm on top of a partially synchronous
system. Through this algorithm, we establish time boundaries on omission failures.
This is important, since the causes of the stragglers are not only crashes, and the
system must react to these issues that harm users and resource providers. In other
words, although not sure that crash has happened, the system should decide whether
to concurrently speculate the affected task or simply kill the straggler and re-execute
it once again from the beginning. The algorithm is described below (Algorithm 4).

In the Algorithm 4, the master process maintains a list of normal, suspected
and speculated tasks. In addition, it adjusts a timeout according to an estimated
completion time increased with some probability margin of error (λ).

Whenever the failure detector triggers a timeout, it will manage those tasks which
do not belong to normal and suspected sets. Accordingly, it will place the tasks in
the suspected set, and triggers a suspect event for the respective task. If the task
belongs to both sets, then this task will be removed from the suspected set. It is very
important to remove it, since it will not request other resources in the next step.

All the suspected tasks are eventually speculated, if new resources, which are in-
dependent from the worker, are available. In this condition, we have not implemented
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Algorithm 4: The High relax failure detector
Implements: HRTimeout
Uses : ProgressScore
upon event (Init) do

normal := u;
suspected := ∅;
speculated := ∅;
startTimer(InitialEstimatedTime);

end
upon event (Timeout) do

forall the task ∈ u do
if (task /∈ normal) ∧ (task /∈ suspected) then

suspected := suspected ∪ {task};
trigger(task, SUSPECT);

else if (task ∈ normal) ∧ (task ∈ suspected) then
suspected := suspected \ {task};
trigger(task, RESTORE);

end
end
forall the task ∈ suspected do

if (task /∈ speculated) then
if (availableResources) ∧ (availableResources /∈ workertask ) then

speculated := speculated ∪ {task};
trigger(task, SPECULATE);

end
end
if (suspectedworker ≥ 3) then

trigger(suspectedworker, LOST);
end

end
trigger(HeartbeatRequest, task, SEND);
startTimer(InitialEstimatedTime);

end
upon event (HeartbeatReply, task, DELIVER) do

normal := normal ∪ {task};
end
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any speculated number for the task which is suspected, although this is possible.
The algorithm checks another condition in the same loop. Namely, it limits the

number of speculated tasks within the same worker. This means, whenever the worker
has a certain number of stragglers, it will be considered lost, in order to let the
scheduler know that this node should not accept future tasks until the node recovers
from this state.

4.3.1 Correctness

The completeness property is satisfied by the algorithm, because if a task is behaving
as a straggler, it will not send a heartbeat the master for a certain period, which
is a condition of the respective master to place this straggler in the suspected set.
Regarding the accuracy property, a timeout according to the initial estimation is
believed to be sufficient for every task to deliver a heartbeat, informing the master
about its liveness and progress score.

4.3.2 Performance

In order to detect a MapReduce straggler through the HR module, the initial timeout
adjustment is crucial. As we have stated before, this algorithm should be capable to
adjust a job specific timeout, according to the estimated job completion time, and a
probable margin of error. This is particularly important for small jobs, whose esti-
mated completion time is under 10 minutes. For longer lasting jobs, we have decided
to leave the default timeout of the Hadoop MapReduce. By this statement, we have
placed a higher boundary (that is, 10 minutes) of the timeout. Knowing that the
majority of the production clusters run small jobs [68, 45, 19, 16, 46], this timeout is
actually addressing the vast majority. We consider that there are also very tiny jobs
whose estimated completion time is very small, maybe in matter of seconds. Since
a timeout of these margins would result harmful for the infrastructure (resource uti-
lization), by giving many wrong suspicions, the algorithm should deploy a minimal
timeout in these cases. This minimal timeout should have a lower boundary, that
guarantees no eventual processing overhead. For small infrastructures, the adminis-
trator can decide this value. For larger infrastructures, the best choice would be to
apply an autonomic approach, similar to our contribution in Chapter 6.

We provide performance simulations, by comparing the Hadoop timeout with
the HR-FD timeout. In Table 4.3, we have taken as a sample a workload with an
estimated time completion of 5 minutes. This is an average value, which help us to
see the evolution, since every iteration lasts approximately 1 minute [115]. In the first
column, there are different iterations of the same workload. According to the iteration,
the second column indicates the finish time of the workload with no failures. The
third column represents the failure injection time, respective to each iteration. Right
after the Hadoop finish time, there are 4 columns listing the HR-FD finish time, with
different λ, which represents the margin of error. As we can notice, this static timeout,
which is clearly better than the default timeout in Hadoop MapReduce, performs
really well for most of the average production cluster jobs, whose completion time is
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Iteration Failure
free
com-
pletion
time

Failure
injec-
tion
time

Hadoop
com-
pletion
time

λ =
1.00

λ =
0.75

λ =
0.50

λ =
0.25

1 5 1 10 6.00 5.75 5.50 5.25
2 4 2 11 7.00 6.75 6.50 6.25
3 3 3 12 8.00 7.75 7.50 7.25
4 2 4 13 9.00 8.75 8.50 8.25
5 1 5 14 10.00 9.75 9.50 9.25

Table 4.3: A performance comparison of Hadoop MapReduce timeout and HR-FD
timeout for a 5 minutes workload.

neither very long and neither very small. As is shown in the Table, the smaller margin
error is used, the estimations are more accurate, since the system is more stable.

The best performance of HR-FD corresponds to the first iterations. This is due
to the fact that the timeout triggers a threshold very early, and is capable of main-
taining a moderate completion time upon failures, comparable to the normal case.
For example, in case of λ = 0.75, if a failure is enforced during the first iteration,
from a normal estimated completion time of te1 = 5min, the new completion time
would be tr = 5.75min, instead of the Hadoop completion time of tH = 10min. In
other words, HR-FD timeout exhibits only 15% of performance degradation, whereas
Hadoop timeout exhibits 100% of performance degradation. Figure 4-2 shows the
behavior of HR-FD compared to default Hadoop and a failure-free scenario along the
iterations. As the job progress score advances through iterations, the HR-FD timeout
benefits decrease when compared to the Hadoop timeout, but despite this, they are
still clearly much more favorable.

4.4 Medium relax failure detector

The previous algorithm (Algorithm 4) belongs to the failure detector mechanisms
deploying a static timeout service. That is, the timeout provided by HR-FD is static,
although adjusted at the beginning. Even the algorithm outperforms the default
Hadoop mechanism, our aim is to extend the basic HR-FD algorithm by giving to
the timeout service a dynamic value.

The ideal choice would be to use an estimated progress score of the overall job,
which is then divided in its phases and consequently, in individual tasks. A dynamic
timeout can rely on the progress score, especially when is predictably task-dependent.
This is an already built-in feature in MapReduce-based systems [11, 4, 62], and other
contributions have given even more accurate results in this field [81, 82].

The main novelty in this module is outlined in the lines of Algorithm 5, where the
algorithm calculates the progress score, by adding a margin of error value (λ), that
should carry the timeout of the next iteration. This involves that the new progress
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Figure 4-2: A performance comparison of Hadoop MapReduce timeout and HR-FD
timeout for a 5 minutes workload.

score is the main parameter of the newly chosen and calculated timeout. Upon each
execution of the timeout event, the module finally starts a new timeout with a new
value.

Algorithm 5: Procedure to calculate the estimated progress score.

. . .
ProgressScore := ProgressScore + λ;
. . .
startTimer(ProgressScore);
. . .

The Algorithm 6 presented below, is called Medium relax failure detector (MR-
FD) and implements an eventual failure detector algorithm on top of a partially
synchronous system. MR-FD enforces stronger timing assumptions than in HR-FD,
but it still implements an eventual failure detector, presumably in a partially syn-
chronous system. Algorithm 6 has resemblance to the previous algorithm, except
in some additional lines. Basically, every task that gets out from the normal set,
joins the suspected set of tasks, and in a certain moment, when the cluster provides
additional resources, it is executed.
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Algorithm 6: The Medium relax failure detector
Implements: MRTimeout
Uses : ProgressScore
upon event (Init) do

normal := u;
suspected := ∅;
speculated := ∅;
startTimer(ProgressScore);

end
upon event (Timeout) do

ProgressScore := ProgressScore + λ;
forall the task ∈ u do

if (task /∈ normal) ∧ (task /∈ suspected) then
suspected := suspected ∪ {task};
trigger(task, SUSPECT);

else if (task ∈ normal) ∧ (task ∈ suspected) then
suspected := suspected \ {task};
trigger(task, RESTORE);

end
end
forall the task ∈ suspected do

if (task /∈ speculated) then
if (availableResources) ∧ (availableResources /∈ workertask ) then

trigger(task, SPECULATE);
speculated := speculated ∪ {task};

end
end
if (suspectedworker ≥ 3) then

trigger(suspectedworker, LOST);
end

end
trigger(HeartbeatRequest, task, SEND);
startTimer(ProgressScore);

end
upon event (HeartbeatReply, task, DELIVER) do

normal := normal ∪ {task};
end
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Iteration Failure
free
com-
pletion
time

Failure
injec-
tion
time

Hadoop
com-
pletion
time

λ =
1.00

λ =
0.75

λ =
0.50

λ =
0.25

1 5 1 10 6 5.75 5.5 5.25
2 4 2 11 5 4.75 4.5 4.25
3 3 3 12 4 3.75 3.5 3.25
4 2 4 13 3 2.75 2.5 2.25
5 1 5 14 2 1.75 1.5 1.25

Table 4.4: A performance comparison of Hadoop MapReduce timeout and MR-FD
timeout for a 5 minutes workload.

4.4.1 Correctness

The failure detector properties are stronger than in the previous algorithm. This
means that, both completeness and accuracy have their assumptions equal or stronger
than HR-FD. Considering this, the completeness property triggers a threshold as long
as the minimum progress score is left, in order to change the set of a suspected task.
On the other hand, the accuracy property is stricter to guarantee the liveness property
of the monitored task.

4.4.2 Performance

Unlike the Algorithm 4, whose initial adjustment of the timeout is crucial, the Al-
gorithm 6 does not really depend on the initial adjustment, except in the case of
those workloads whose estimated completion time is really small, since in this case,
the completion time is equal to the minimum possible timeout adjustment. This
minimum value is the same as in the Algorithm 4, in order to enforce boundaries for
future latency and heartbeat overhead.

The dynamic timeout service is provided at the expense of a higher resource uti-
lization. Whereas the computing resources did not represent any real starvation risk,
the Algorithm 6 is using clearly a higher amount of resources, since more speculative
executions are needed.

In Table 4.4, we provide performance simulations, maintaining the same methodol-
ogy than HR-FD (a workload sample with an estimated completion time of 5 minutes),
by comparing the Hadoop timeout with the MR-FD timeout. Unlike the HR-FD time-
out, whose reaction outcome was clearly noted in the first iterations due to its static
parameter, MR-FD behaves clearly much better than the default timeout setup of
Hadoop MapReduce.

For instance, for λ = 0.75, if a failure is injected during the first iteration, from a
normal estimated completion time of te1 = 5min, the new completion time would be
tr = 5.75min, instead of the Hadoop completion time of tH = 10min. In other words,
MR-FD timeout exhibits only 15% of performance degradation, whereas Hadoop
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Figure 4-3: A performance comparison of Hadoop MapReduce timeout and MR-FD
timeout for a 5 minutes workload.

timeout exhibits 100% of performance degradation. And actually, as the job progress
score advances through iterations, the MR-FD timeout maintains its performance
when compared to the Hadoop timeout, except by the small influence of the accuracy
margin values, which make the difference for all the iterations.

As in the previous section, Figure 4-3 shows the behavior of MR-FD compared
to default Hadoop and a failure-free scenario along the iterations. Unlike HR-FD,
the MR-FD timeout benefits increase when compared to the Hadoop timeout as the
iterations increase.

4.5 Low relax failure detector
As previously mentioned, the difference between Algorithm 4 and Algorithm 6 is the
time reacting to failures. Whereas Algorithm 4 assume static timeout predictions
for suspicious tasks, the Algorithm 6 reacts dynamically to the same suspicions, by
providing clear advantage in job completion time. However, the Algorithm 6 does not
completely provide strictly bounded timings assumptions. This algorithm does not
fit with systems whose results are strictly deadline-bounded, and where it would be
possible to afford a bigger amount of resources in order to complete their tasks as fast
as possible. These systems could belong to the type of mission critical systems (such
as military or air traffic control systems), or enterprise systems (such as auctioning
systems), whose decision making is important and urgent.

Apart from the heartbeat mechanism that is used to deploy a timeout service for
tasks, the same mechanism could be used to monitor the machines (node, worker)
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metrics and adjust specific thresholds in order to target or enforce the completion
time of deadline-bounded workloads (requests).

For deadline-bounded workloads we consider the timeout for the workers as an
additional parameter. As long as this timeout notices uncommon behavior after a
certain established period, it will request from the application to trigger speculative
execution for the ongoing tasks on that particular worker. If there is no task, then
it will stop deploying future tasks, until the worker establishes itself into the normal
set. For example, in a worker, whose monitoring system monitors parameter p, if
this parameter does not appear during a number of times provided by a threshold
function, the failure detector mechanism will suspect all of its tasks, and declare the
worker as lost, as shown in Algorithm 7.

Algorithm 7: Worker parameters monitored with separate timeout.
forall the worker ∈ u do

if (measures(worker, p) ≤ threshold(p)) then
suspected := suspected ∪ {taskworker};
trigger(task, SUSPECT);
lostworkers := lostworkers ∪ {suspectedworker};
trigger(suspectedworker, LOST);

end
end

The Algorithm 8 may even expand and maintain a history of the workers. By
detecting a repeatable defect in any of them, it may decide to give priority to newer
or more stable workers, as long as they respect a certain degree of data locality [110].

The approach is shown in Algorithm 8. This algorithm expands the Algorithm
MR-FD, by considering the additional timeout of the workers. As soon as one of the
timeouts shows an uncommon behavior, from either tasks or workers, the algorithm
triggers speculations in different stable nodes.

4.5.1 Correctness

Let us consider the completeness property first. As long as a task or worker is behaving
right, the algorithm does not act. However, if a task or worker do not deliver heartbeat
signals for a certain period, these tasks or workers will be deleted from the normal
set of tasks/workers, entering into the suspected set. The master process will suspect
these tasks and workers until the job has finished. Therefore, this algorithm shows
some differences in terms of the use of the sets with regards to the previous two failure
detectors. Indeed, the change of the sets is for this algorithm more rigorous. If there
is a timeout threshold, the suspected tasks will not be terminated. However, after
a certain task enters into the suspected set, it will not be able to come back to the
normal set again. Therefore, all these tasks of the suspected set have to be speculated
in other workers.
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Algorithm 8: The Low relax failure detector
Implements: LRTimeout
Uses : ProgressScore
upon event (Init) do

normal := u;
suspected := ∅;
speculated := ∅;
startTimer(ProgressScore, threshold(p));

end
upon event (Timeout) do

ProgressScore := ProgressScore + λ;
forall the task ∈ u do

if (task /∈ normal) ∧ (task /∈ suspected) then
suspected := suspected ∪ {task};
trigger(task, SUSPECT);

end
end
forall the task ∈ suspected do

if (task /∈ speculated) then
if (availableResources) ∧ (availableResources /∈ workertask ) then

trigger(task, SPECULATE);
speculated := speculated ∪ {task};

end
end
if (suspectedworker ≥ 3) then

trigger(suspectedworker, LOST);
end

end
trigger(HeartbeatRequest, task, SEND);
startTimer(ProgressScore);

end
upon event (Timeoutworker) do

forall the worker ∈ u do
if (measures(worker, p) ≤ threshold(p)) then

suspected := suspected ∪ {taskworker};
trigger(task, SUSPECT);
lostworkers := lostworkers ∪ {suspectedworker};
trigger(suspectedworker, LOST);

end
end
startTimer(threshold(p));

end
upon event (HeartbeatReply, task, DELIVER) do

normal := normal ∪ {task};
end
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Iteration Failure
free
com-
pletion
time

Failure
injec-
tion
time

Hadoop
com-
pletion
time

λ =
0.25

λ =
0.15

λ =
0.10

λ =
0.05

1 5 1 10 5.25 5.15 5.10 5.05
2 4 2 11 4.25 4.15 4.10 4.05
3 3 3 12 3.25 3.15 3.10 3.05
4 2 4 13 2.25 2.15 2.10 2.05
5 1 5 14 1.25 1.15 1.10 1.05

Table 4.5: A performance comparison of Hadoop MapReduce timeout and LR-FD
timeout for a 5 minutes workload.

Regarding the accuracy property, the master will suspect a task (worker), only if a
task (worker) is not able to transmit a message within a specified interval. Otherwise,
if any task or worker behave properly, it is assumed that would be able to send delivery
notifications to the master.

4.5.2 Performance

The above Algorithm 8 does not work with a single static timeout, but neither it
depends only on a single dynamic timeout. Therefore, it requests the participation
of an external monitoring system. While having two timeout observers, every time
when a change happens that is detected from one or both existing entities, the user
can detect probable relationships between correlations, and react in advance based
on our predefined conditions, although independent to the resource cost.

On the contrary to the two previous Algorithm 4 and Algorithm 6, whose initial
and the dynamic adjustment of the timeout was crucial, in this case, the Algorithm
8 goes beyond this. As previously mentioned, again, the first adjustment is only im-
portant for those workloads whose estimated completion time is really small, and the
dynamic adjustment is only important for those workloads whose estimated comple-
tion time is endangered from common task problems. However, the suspicion prob-
ability takes bigger risks when noticing machine issues in those places where tasks
are allocated. On the other hand, if the failure detector monitor depends on two
stricter timeouts instead of one, the resource utilization factor increases, because the
algorithm reacts sooner to suspicions and therefore, there would be more suspicions
than in the other scenarios.

In Table 4.5, we provide performance simulations, maintaining the same methodol-
ogy as in HR-FD and MR-FD (a workload sample with an estimated time completion
of 5 minutes), by comparing the Hadoop timeout with the LR-FD timeout. Unlike the
HR-FD timeout, the Algorithm 8 reacts very well for any production cluster scenario,
and performs a slight improvement when comparing to the MR-FD timeout.

For example, in case of λ = 0.15, if a failure is enforced during the first iteration,
from a normal estimated completion time of te1 = 5min, the new completion time
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Figure 4-4: A performance comparison of Hadoop MapReduce timeout and LR-FD
timeout for a 5 minutes workload.

would be tr = 5.15min, instead of the Hadoop completion time of tH = 10min. In
other words, LR-FD timeout exhibits only 3% of performance degradation, whereas
Hadoop timeout exhibits 100% of performance degradation.

As in the previous cases, Figure 4-4 shows the comparison between default Hadoop
timeout and LR-FD timeout, representing also the failure-free completion time. This
is clearly the approach with a higher performance, due to both timeouts (tasks and
workers) and the lower margin of error exhibited by this algorithm.

Finally, Figure 4-5 shows the comparison between all the algorithms, HR-FD,
MR-FD and LR-FD and the default Hadoop MapReduce timeout. As we can notice,
MR-FD and LR-FD behaves much better than the other alternatives. This is due to
the dynamic adjustment of the timeout, which is applied by both approaches. LR-
FD behavior is slightly better than MR-FD, demonstrating that the external timeout,
that is, the timeout associated to the workers, is not so relevant as the task timeout.

4.6 Summary
This chapter provides a formalization of a failure detection abstraction for MapReduce-
based systems. As part of this formalization, we have introduced three different al-
gorithms, namely: (i) High relax failure detector (HR-FD), based on a static timeout
service; (ii) Medium relax failure detector (MR-FD), based on a dynamic timeout ser-
vice; and (iii) Low relax failure detector (LR-FD), based on the intersection between
the MR-FD timeout service and an external monitoring system timeout service, in
order to achieve more efficient failure detections.
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Figure 4-5: A performance comparison of Hadoop MapReduce timeout, HR-FD, MR-
FD, and LR-FD timeout for a 5 minutes workload.

According to the performance measurements, we have demonstrated that these
abstractions outperform the default timeout service of the Hadoop YARN.
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Chapter 5

Diarchy: peer management for
solving the MapReduce single points
of failure

5.1 Introduction

Hadoop has been widely used in the last years as the open source implementation
of the MapReduce framework proposed by Google [42]. Over these years, the clas-
sic version of Hadoop has faced many drawbacks in large-scale systems. Among
them, scalability, reliability and availability are major issues not solved in the clas-
sic Hadoop. The YARN project has been developed with the aim of solving these
problems and other additional ones, described in [101].

The key idea behind YARN is the division of the duties of the JobTracker of the
classic Hadoop version into separate entities: (i) the Resource Manager, composed by
the Scheduler and Application Manager; (ii) the Node Manager, which is responsible
for monitoring nodes and informing to the Resource Manager, and (iii) the Applica-
tion Master, whose duty is to negotiate the number of workers and monitoring their
progress. Whereas the Scheduler is in charge of resource allocation, the Application
Manager accepts job submissions, and initiates the first job container for the job
master. This job master is the leader and is called Application Master.

This architectural change has as main goal to provide scalability. In addition, it
removes the single point of failure presented by the JobTracker. However, this design
decision has introduced new sources of problems. Namely, the resource scheduler, the
application manager and the application master are in the YARN architecture single
points of failure.

This chapter describes a new proposal, called Diarchy, which aims to increase the
reliability of YARN, without decreasing its performance and scalability. Diarchy is
based on the sharing and backup of responsibilities between two master peers. For the
sake of simplicity, the chapter only addresses the solution for the application master.
However, this methodology can be directly applied to the other two cases: resource
scheduler and the application manager.
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Figure 5-1: YARN architecture in different scenarios. Case 1. Normal working state.
Case 2. Failures among workers. Case 3a and 3b. Failure among masters. YARN
does not have a solution for Case 3a. The consequence of this is Case 3b (3a 2 3b).

As a summary, this chapter has the following main contributions:

1. Definition of the reliability problem of YARN from a probabilistic point of view.

2. Design of a new model, called Diarchy, based on responsibilities delegation
between peers.

3. Evaluation of Diarchy and comparison with the behaviour of YARN.

The remainder of this work is organized as follows. We describe in-depth the
problem in Section 5.2. We introduce the Diarchy architecture in Section 5.3. We
evaluate the Diarchy approach in Section 5.4. Finally, we summarize the contribution
in Section 5.5.

5.2 Problem definition

In this section, we describe the motivation behind this work. We analyze, from a
probabilistic point of view, the impact of failure of MapReduce masters in a large-
scale environment scenario. A sketch of this analysis is illustrated in Figure 5-1.

According to [68], there are 5 failures on average for each MapReduce job in
Industry clusters. Many approaches have been dealt with the failures of generic
tasks, but as far as we know, none of them is focused on the failures of masters in the
YARN architecture.
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As we can see in Figure 5-1, the Case 1 shows a normal working state in YARN.
In this case, we have MX MapReduce masters and n + m + · · · + s workers, and all
of them work perfectly. Case 2 shows a scenario in which one worker fails. This does
not affect to other workers. Our work focuses on the Case 3, in which the failure in
a master implies a failure in the workers managed by such a master.

Let us consider a cluster S that runs 1 million jobs (J = 1000000) per day. Let us
suppose each job needs around 350 slave tasks (NT = 350) to complete. One of these
tasks is the master task TM , which controls the other workers tasks TW . As previously
mentioned, on average, a cluster has a failure rate of 5 tasks per job (NF = 5). Since
the master is executed as any other tasks, its failure probability, P (FM), has the same
value as the failure probability of other tasks in the cluster, that is, the workers failure
probability, P (FW ). Both are equivalent to the task failure probability, P (FT ):

P (FM) = P (FW ) = P (FT ) (5.1)

According to Laplace rule, the failure probability for each task is:

P (FT ) =
1

NT

×NF (5.2)

Therefore, in our scenario, we get:

P (FT ) =
1

350
× 5 =

1

70

By transforming the binary distribution β into a normal distribution N where
Q = 1− P (FT ), we can calculate the total number of failed tasks, FT :

FT = β (NT , P (FT )) ≈ NT

(
NTP (FT ),

√
NTP (FT )Q

)
(5.3)

In our case, according to the above formula we have:

FT = β

(
350.000.000,

1

70

)
≈ N

(
350.000.000

70
,

√
1

70
× 69

70
× 350.000.000

)
≈ N (5.000.000, 2220)

Consequently, the number of failed masters, FM is:

FM = β

(
1.000.000,

1

70

)
≈ N

(
1.000.000× 1

70
,

√
1

70
× 69

70
× 1.000.000

)
≈ N (14286, 119)
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This is a very large number1, taking into account that a potential failure of these
masters will cause re-execution of the same number of jobs. Each of these failed
masters, managing a considerable amount of tasks, will consequently involve the loss
of the progress of these tasks:

FWM = FM ×NT = 14286× 350 = 5.000.100

being FWM the number of failed workers by the failure of a master.
This means that in the worst case assumption the number of failed tasks would

be this number times 2, because of the addition of the probability of failure of worker
tasks. This number would go up to 10 million per day. In other words, 2.86% of the
tasks needs to be re-executed for a million job cluster.

The resource utilization numbers we get are even higher. If each re-executed job
uses 10 minutes on average to complete, this will represent a huge delay, making it
impossible a close to optimal resource utilization as expected in the official proposal
of YARN [101].

5.3 Diarchy algorithm

Diarchy is an old form of government which is still used in some countries. This
government system has two individuals, called diarchs, in charge of governing the
country or the State. Diarchs share the responsibilities and report the progress state
of their work to each other. In this way, the diarch 1 is informed of the duties of
diarch 2 and viceversa. In a wider context, diarchy is nowadays used for defining a
dual rule system for both organizations or governments.

Our approach, called Diarchy algorithm, is based on the Diarchy ruling as follows:
in the applications master queue, there are two jobs, J1 and J2, waiting to be run.
The application manager will assign one master to each job, TM1 ∈ J1 and TM2 ∈ J2,
while informing both of them of their peers. If something happens to TM1, the other
peer TM2 will be in charge by the virtue of delegation. In the same way, if something
happens to TM2, the respective peer TM1 will take the responsibility for it. Along
the time, both masters will behave as peers, and apart from the progress score of
their workers, they will also receive the progress score of their peer workers. In order
to achieve this, the application manager waits for two consecutive jobs to arrive in
the queue and then submits them both for execution. This is feasible, since the load
of a master node is significantly lower than the worker nodes one. Therefore, an
additional progress score from its peer workers would not represent potential danger
or misbehavior for any of the masters. Figure 5-2 shows graphically the Diarchy
algorithm.

1The first value is the master failure probability rate, and the second value its standard deviation.
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Figure 5-2: Diarchy architecture.

5.3.1 Diarchy performance

One of the major issues of failure detection mechanisms in MapReduce is the proper
usage and configuration of an important parameter, the heartbeat. By default, miss-
ing a certain number of heartbeats is used for detecting the entities failures in MapRe-
duce. Besides from serving as acknowledge message to the master, indicating that a
worker is alive, heartbeats are also a channel for other kind of messages. As a part of
the heartbeat, a worker will indicate whether it is ready to run a new task, and if it
is, the master will allocate a task, which is used to communicate to the worker using
the heartbeat return value [105]. In the case of the Diarchy algorithm, as each worker
reports in parallel to both masters, this will cause higher bandwidth utilization. In
order to avoid this, the heartbeat will only report to a master, alternating the master
in every iteration. Namely, if in the current YARN version, this report value is sent
every t seconds, the Diarchy algorithm will require each master to be informed every
2× t seconds, with the aim of optimizing the network utilization.

Now, the probability value of the failure rate by using the Diarchy algorithm is:

P (TM) =
NF

NT

× NF

NT

(5.4)

since both masters have to fail in the case of a master failure.

Therefore, in our study case we have:

P (TM) =
1

70
× 1

70
=

1

4900

And thus, the number of failed masters is:
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X = β (NM , P (TM))

= β

(
1.000.000,

1

4900

)
≈ N (204, 14)

This formula provides the average failure rate for Diarchy, taking into account that
when both of the master peers fail, they are considered as one failure, as previously
mentioned. Consequently, the real number of failed masters would be:

FM = N (NM , P (FM))× 2 (5.5)

As we can notice, the Diarchy algorithm is NT

NF
more reliable than the default

Hadoop YARN. This means that Diarchy puts a lower boundary in the worst case
assumption, with the number of failed tasks not surpassing 5 millions per day. In
other words, the new percentage margin is 1.43% of possible re-executions, instead of
2.86% as it was with the default YARN framework.

5.3.2 Going general: a possible m-peers approach

Theoretically, the Diarchy algorithm could work with more peers (let us say m peers)
than those assigned in the default proposal, that is, 2. In this way, the fault tolerance
provided by this hypothetical framework would be higher. However, in practice, this
is not advisable, because of three reasons: (i) network overhead ; (ii) failure detection
efficiency and (iii) abstraction complexity. Below we explain in depth all these issues.

By using more than 2 peers in a Diarchy scheme, all the workers have to report
their progress to the additional masters. This would increase the number of messages
exchanged in the framework, since there has to be a message interaction between m
masters and n workers. The default heartbeat value in YARN Hadoop ranges from
1 to 3 seconds, depending on different attributes such as cluster size, type of jobs,
etc. If this interval stays unchanged, the network load is increased proportional to
the number of masters. This is unfeasible, thus it would be necessary to increase the
default heartbeat value.

By default, the MapReduce failure detection service only addresses crash and
crash-recovery failures. If the heartbeat message of a task has not been sent after
a given threshold (600 seconds, by default), the master will mark the task as failed
and will perform a set of steps to solve the issue. Namely, it requests an additional
container for the task and reschedules its execution, trying to avoid rescheduling the
task on the same node where it has previously failed. An earlier speculative execution
of failed tasks is highly prioritized, in order to detect if a tasks fails repeatedly due
to a bug. If this is the case, then a master could invoke stopping the job earlier.

In failure detection, there are two metrics that provide the goodness of the mech-
anism [33]:
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• Completeness, which requires that a heartbeat-based detector eventually sus-
pects every task that actually crashes.

• Accuracy, which restricts the mistakes that a heartbeat-based detector can
make.

By using an m-peer scheme, the failure detection mechanism can decrease the
completeness property and therefore, to decrease the failure detection efficiency.
This is due to the fact that as the heartbeat would be higher, some failures could not
be detected.

Finally, an important feature of Diarchy is its simplicity. Keeping two peers main-
tains the abstraction simplicity. However, if the number of master peers is increased,
the abstraction complexity will be increased, since it would be necessary to design
a more complex protocol to be used in case of failure of one of the masters.

5.4 Experimental evaluation

The aim of this section is the evaluation of the Diarchy algorithm. The evaluation is
based on the following parameters:

• Job size: in the set of experiments, we have analyzed the Diarchy algorithm for
different job sizes, starting from a job that consists of 100 workers tasks, until
the job reaches the size of 1000 tasks.

• Cluster size: we have tested Diarchy in different set of clusters, ranging from a
small cluster with a capacity to serve 10 daily normal jobs, up to a large-scale
cluster with potentially million job executions running per day.

• Failure rate: last but not least, the failure rate in the cluster is an important
metric for the performance of Diarchy, since there are different infrastructures
with a variable number of failure rates, ranging from 1 failure to 10 failures2.

Subsequently, we have evaluated how these parameters are related by means of
the following scenarios:

• Job size vs. failure rate: this test measures how Diarchy behaves regarding
these two parameters, considering the same cluster.

• Job size vs. cluster size: it measures the behavior of Diarchy with regards to
the job and cluster sizes, keeping the same failure rate.

• Cluster size vs. failure rate: it measures the behavior of Diarchy for the same
type of jobs, according to different failure rates and cluster size.

2As previously mentioned, there are 5 failures on average for each MapReduce job in Industry
clusters.

87



5.4.1 Experimental settings

The Diarchy algorithm has been evaluated on a round-based simulator. This simulator
enables the evaluation of all the important parameters of Hadoop, including the
default functioning of Hadoop YARN. On top of YARN, we have implemented the
Diarchy algorithm.

Along the experiments, if not stated otherwise, the default configuration of the
simulating environment is J = 10000 jobs in cluster S, each of the jobs composed by
NT = 350 tasks (one for master, the rest for worker nodes), and with NF = 5 task
failure rate. For the sake of simplicity and efficiency, a single value was analyzed, the
master failure rate.

5.4.2 Single parameter tests

Job size. In this first set of experiments, we compare Diarchy and the default YARN
Hadoop in a cluster with different job workloads. In practice, users submit jobs which
consist on different workloads, depending on the user application. Consequently, the
MapReduce framework allocates an estimated number of tasks for every workload.

In the three following figures (Figure 5-3, 5-4, and 5-5 we have run experiments
with job workloads whose number of tasks ranges from 100 up to 1000. In Figure 5-3
we assume that when a job increases its number of tasks, the master failure probability
gets lower. The reason for this is that independently from the number of tasks, we
keep constant the number of failures. At first, we notice that YARN has a poor
behavior when the number of tasks is 100. While the master failure reaches the value
of 500 in YARN, the Diarchy execution value remains by far lower, not exceeding
50. As expected, the failure rate in bigger workloads demonstrates relatively smaller
values for both executions. However, Diarchy again outperforms YARN, by showing
low boundary values that are near to zero.

Figure 5-4 shows the results of the experiments introducing a different setup, that
is, the failure rate is proportional to the number of tasks by a factor 5 : 350. On
average, the workloads used in Hadoop jobs are composed by 350 tasks [68, 45]. This
means that the smallest workload in the experiment, which consists of only 100 tasks,
has an approximate failure rate of 1.43, the workload with 200 tasks would have a
failure rate of 2.86 and so on, until the largest workload, which consists of 1000 tasks,
having an average failure rate of 14.29. We observe that while YARN failure rate
ranges from 110 to 160 master failures rates for 10000 jobs, the highest value in
Diarchy reaches 4.8, which is considerably lower compared to YARN.

In Figure 5-5 we can see the results of the experiments by using a different pro-
portion between failure rate and task number, that is, 5 : 100. In this case, we are
considering an environment with a higher number of failures on average. For this
reason, the number of master failures is higher, with an average value of 500. Diarchy
also increases this value, however, it is clearly lower than its counterpart, with an
average value of 50. These results suggest that a MapReduce framework enriched
with Diarchy may provide around 10x more reliable masters compared to the default
YARN Hadoop.
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Figure 5-3: Keeping constant NF = 5
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Figure 5-4: NF = 5 per every 350 tasks on average
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Figure 5-5: NF = 5 per every 100 tasks on average

In addition, we have executed a probability test for a million job cluster. Table 5.1
shows the average value and standard deviation for both YARN and Diarchy. This
Table demonstrates the scalability of Diarchy, which outperforms clearly the behavior
of YARN, also in this scenario.
Cluster size. This part of the evaluation investigates how Diarchy behaves when we
vary the number of jobs in a cluster, evaluating clusters with only 10 daily jobs up to
clusters with one million daily jobs. We have made all the experiments keeping the
number of tasks constant for a job (we consider that a job consists of 350 tasks).

In this scenario, the number of master failures grows linearly. As shown in Figure
5-6, both YARN and Diarchy follow closely this trend. However, while the gradient of
the growth line of YARN is around 1, 43%, the gradient of the growth line of Diarchy
is much lower, around 0, 06%. This means that, for instance, in the case of 10000 jobs
per cluster, YARN has 142 master failures on average, while Diarchy has an average
value of 6 master failures. In addition, it is also important to notice that it is difficult
that two peer masters fail at the same time.

Table 5.2 shows the results of applying the probability tests with the same number
of jobs. The results of the probabilistic test are similar to the results achieved by
running the simulation.
Failure rate. This last part of the evaluation describes how Diarchy behaves when
we vary the number of failures. At some point, a high failure rate can provoke the
degradation of the system, jeopardizing the overall functioning of the framework. In
other words, if the number of failures is very high, the probability that failures affect
the same worker is also high. In Hadoop, if a failure is repeated more than 4 times, it
will imply the job re-execution. As in the previous scenario, we have performed the
experiments keeping the number of tasks constant for a job (350 tasks). We have also
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Number YARN Diarchy
of tasks Average Stdev Average Stdev

100 50000 217.945 2500 49.937
200 25000 156.125 625 24.992
300 16666.667 128.019 277.778 16.664
400 12500 111.102 156.25 12.499
500 10000 99.499 100 9.999
600 8333.333 90.906 69.444 8.333
700 7142.857 84.213 51.020 7.143
800 6250 78.810 39.063 6.250
900 5555.556 74.328 30.864 5.555

1000 5000 70.534 25 5.000

Table 5.1: Probabilistic number of master failures, according to the number of tasks
per job for a million job cluster.
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Figure 5-6: Experimental failure rate, according to the number of jobs per cluster.

91



Number YARN Diarchy
of jobs Average Stdev Average Stdev

10 0.149 0.375 0.002 0.045
100 1.429 1.187 0.020 0.143

1000 14.286 3.753 0.204 0.452
10000 142.857 11.867 2.041 1.428

100000 1428.571 37.526 20.408 4.517
1000000 14285.714 118.666 204.082 14.284

Table 5.2: Probabilistic failure rate, according to the number of jobs per cluster.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Number of failures per job

M
a
s
te

r 
fa

ilu
re

 r
a
te

 

 

Yarn

Diarchy

Figure 5-7: Experimental failure rate, according to the average number of failures per
job.

kept constant the number of jobs to 10000. As we can see in Figure 5-7, the number
of master failures grows also linearly. Here, the proportion between the gradient of
the growth line in Diarchy and the gradient of the growth line in YARN is only 5%.
This means that, for instance, if we have an average number of failures of 5 per job,
the total number of master failures in the case of 10000 jobs is around 145 for YARN,
while Diarchy has an average value of around 4 master failures.

Table 5.3 shows the results of the application of the probability tests to a million
job simulated cluster. Again, the YARN values increase linearly, in the same way the
failure ratio increases in Diarchy, but with a higher slope in the case of YARN.
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Number YARN Diarchy
of failures Average Stdev Average Stdev

1 2857.143 53.376 8.163 2.857
2 5714.286 75.377 32.653 5.714
3 8571.429 92.184 73.469 8.571
4 11428.571 106.292 130.612 11.428
5 14285.714 118.666 204.082 14.284
6 17142.857 129.804 293.878 17.140
7 20000 140 400 19.996
8 22857.143 149.448 522.449 22.851
9 25714.286 158.282 661.224 25.706

10 28571.429 166.599 816.327 28.560

Table 5.3: Probabilistic failure rate, according to the average number of failures per
job.

5.4.3 Double parameter tests

This subsection describes how the three parameters (job size, cluster size and failure
rate) analyzed previously, are related between them.
Job size vs. failure rate. In large scale data environments, even though there are
often short jobs instead of large ones [45], and NF = 5 seems to be a good average
value, it is reasonable to assume that not all the environments have the same behavior
and that Diarchy can be used in different scenarios. For instance, Diarchy could be
used for a supercomputing scenario [43, 66] or in systems that require high reliability
[39]. For this reason, it is important to know how Diarchy behaves when different
pairs (job size, failure rate) are used, compared to YARN.

As shown in Figure 5-8, the best scenario for Diarchy is achieved when jobs are
small, and the failure rate per job is high. Diarchy is able to keep a moderate master
failure rate. The highest difference between YARN and Diarchy is achieved when the
average failure rate is close to the maximum number of failures per job (10), and the
number of tasks per jobs is close to the minimum configured size limit of 100 tasks.
In this case, Diarchy outperforms YARN, providing 5x better reliability performance.
Moreover, Diarchy behaves better than YARN for any pairs (job size, failure rate).
Cluster size vs. failure rate. This test evaluates the behavior of Diarchy and
YARN when we have different clusters that are specialized to run similar jobs, but
with different failure rate between them. Figure 5-9 shows this comparison, concluding
again that Diarchy provides better reliability results that its counterpart for any
combinations (cluster size, failure rate).

The best scenario for Diarchy is achieved when the cluster has the maximum
number of jobs (1000000) and the highest failure rate (10). In this case, the reliability
performance improvement of Diarchy goes up to 17x.
Cluster size vs. job size. This experiment evaluates as Diarchy and YARN
behave in a scenario in which we can have different clusters and different jobs, keeping
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Figure 5-8: YARN vs. Diarchy failure rate compared in a static cluster.
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Figure 5-9: YARN vs. Diarchy failure rate compared in static jobs.
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Figure 5-10: YARN vs. Diarchy failure rate compared in static failures.

constant the failure rate (NF = 5). Figure 5-10 shows the results of this evaluation,
with the same conclusions than in previous tests, that is, Diarchy outperforms YARN
for any configurations (cluster size, job size).

The maximum difference between Diarchy and YARN is given when the cluster
size is close to the maximum number of jobs (1000000) and the job size is close to the
minimum number of tasks (100). In this case, Diarchy gets a reliability performance
improvement of 9x.

5.5 Summary
Hadoop YARN, the so-called next generation MapReduce framework, has tried to
solve some of the drawbacks of its predecessor, classic Hadoop. Specifically, YARN
has improved the scalability, by means of the separation of each master role into
different daemons. However, the reliability of the application master has not been
solved yet.

This chapter describes Diarchy, a novel framework that tries to enhance the re-
liability of YARN, by means of the sharing of responsibilities between two master
peers.

We have evaluated Diarchy in a set of experiments, considering three important
parameters, i.e., cluster size, job size, and an average failure rate. The intersection
of each of the parameters has also been used for the evaluation. As a consequence,
we have found that Diarchy outperforms the default YARN framework in all the
experimental scenarios, by reaching an improved performance reliability up to 17x at
most.

As far as we know, this is the first study to measure the impact of the master
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problem in YARN, and the first solution to this problem by means of the definition
of MapReduce masters as peers. Diarchy is expected to have wider application in the
rest of the YARN daemons, and other master/slave frameworks in general.
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Chapter 6

AdaptCont: feedback-based resource
allocation system for MapReduce

6.1 Introduction

Cloud Infrastructures usually make use of virtualization techniques. The concept of
Virtual Machine (VM) has been present in cloud solutions since the beginning. Many
of the cloud-based approaches provide virtual machines to their users to fulfill their
processing needs by means of an isolated environment.

Some of the most important cloud frameworks are MapReduce systems [42], which
are oriented to batch processing. MapReduce does not need all the power offered by
VMs, which are able to emulate a complete hardware and software infrastructure
through a full operating system and its add-ons. Instead of this, MapReduce only
requires the isolation of a limited set of computing resources for individual processes
(map, reduce and other daemons). This capability is provided by containers, which,
unlike VMs, are oriented to support a single application or process.

A container is an encapsulation of a subset of computing resources, placed on a
single node of a cluster. A VM has by far much more overhead than a container,
because the former is designed to emulate a virtual hardware through a full operat-
ing system and its proper additional add-ons, whereas the latter is designed to run
a single application or process. As a result of this, a considerable amount of cloud
solutions, not only MapReduce-based clouds, are using currently containers as re-
source allocation facility. Indeed, many experts are seeing containers as a natural
replacement for VMs in order to allocate resources efficiently, although they are far
from providing all the features needed for virtualizing operating systems or kernels.

Although containers are a good choice for MapReduce (vs VMs), we state that
the containers-based resource allocation given by the state-of-the-art MapReduce ap-
proaches, such as Hadoop YARN [101], is not efficient. For each user request in a
YARN framework, the container configuration is static in terms of computing re-
sources, no matter the particular requirements of both the request and the appli-
cation. In order to deal with the different types of requests, YARN containers are
usually oversized, decreasing the performance of the system. Moreover, occasionally
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containers do not have sufficient resources for addressing the request requirements.
This could lead to unreliable situations, jeopardizing the correct working of the ap-
plications. For the sake of simplicity, we only consider the main computing resources,
the main memory (RAM) and the Computing Processing Unit (CPU).

We present a novel approach for optimizing the resource allocation at the container
level in MapReduce systems. This approach, called AdaptCont, is based on feedback
systems [23], due to its dynamism and adaptation capabilities. AdaptCont is in
charge of choosing the amount of resources needed by a specific container, depending
on several parameters, such as the real-time request input, the number of requests,
the number of users and the dynamic constraints of the system infrastructure, such
as the set of resources available. We define two different selection approaches, Dy-
namic AdaptCont and Pool AdaptCont. Whereas Dynamic AdaptCont calculates the
exact amount of resources per each container, Pool AdaptCont chooses a predefined
container from a pool of available configurations.

In order to validate our approach, we use AdaptCont for a particular case study on
a particular MapReduce system, the Hadoop YARN. We have chosen the Application
Master of Hadoop YARN instead of the YARN workers, because of the importance
of this daemon and because it involves the most complex use of containers. The
application master container is required in every application. Additionally, the master
orchestrates its proper job, but its reliability can jeopardize the work of the job
workers. On the other side, a particular worker usually does not have impact on the
reliability of the overall job, although it may contribute to the delay of the completion
time. The experiments show that our approach brings substantial benefits compared
to the default mechanism of YARN, in terms of use of RAM and CPU. Our evaluation
shows improvements in the use of these resources, that ranges from 15% to 75%.

As a summary, this chapter has the following main contributions:

1. Definition of a general-purpose framework called AdaptCont, for the resource
allocation at the container level in MapReduce systems.

2. Instantiation of AdaptCont for a particular case study on Hadoop YARN, that
is, the application master container.

3. Evaluation of AdaptCont and comparison with the default behavior of Hadoop
YARN.

The rest of the chapter is organized as follows. In Section 6.2 we introduce Adapt-
Cont as a general framework based on feedback systems for allocating container re-
sources. We introduce a case study of the framework in Section 6.3. We evaluate
AdaptCont in Section 6.4. Finally, we summarize the main contributions in Section
6.5.

6.2 AdaptCont model and design
According to [23], feedback systems refer to two or more dynamical systems, which are
interconnected in such way that each system affects the behavior of others. Feedback
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systems may be open or closed. Assuming a feedback system F, composed by two
systems A and B, F is closed if their components form a cycle, being the output of
system A the input of system B, and the output of system B the input of system
A. On the contrary, F is open when the interconnection between systems B and A is
broken.

Feedback systems are based on a basic principle: correcting actions should al-
ways be performed on the difference between the desired and the actual performance.
Feedback allows us to (i) provide robustness to the systems, (ii) modify the dynamics
of a system by means of these correcting actions and (iii) provide a higher level of au-
tomation. When a feedback system is not properly designed, a well known drawback
is the possibility of instability.

An example of a dynamic system that can benefit from the feedback theory nowa-
days is a production cloud [20]. In this scenario, users, applications and infrastruc-
ture are clearly interconnected and the behavior of one of these systems influence
each other. Our approach, AdaptCont, is a Feedback system, whose main goal is to
optimize the resource allocation at the container level in clouds and specifically in
MapReduce-based systems.

Before designing the Feedback System, it is necessary to define the features of a
cloud. Namely:

• A cloud has a limited set of nodes n1, n2, . . . nm.

• Each node ni has a limited set of containers ci1, ci2, . . . cil.

• The system can receive a limited set of job requests j1, j2, . . . jr.

• Every job request has its workload input. These jobs are part of applications.

• The same workload can be used as an input for different applications.

• Applications could divide a large workload in small input partitions called splits,
each split being a workload of a particular container.

• Depending on the cluster size and scheduler limitations, simultaneous containers
could run in a single or multiple sequential groups called waves.

• By default, all the containers should finish before the application submits the
final output to the user.

• Applications may introduce different job completion time, even though under
the same user, input and allocated resources.

In a dynamic cloud, these parameters may change in real-time. Detecting these
changes is strongly dependent on the monitoring system, which should be particularly
focused on the infrastructure. In order to perform this monitoring process, we have
developed GMonE [79], a general-purpose cloud monitoring tool that provides a better
performance compared to those present in state-of-the-art systems such as Amazon
EC2 [3] and OpenNebula [80].
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Figure 6-1: A generalized framework for self-adaptive containers, based on the feed-
back theory.

At a generic level, we can follow a feedback-based approach based on three stages:
Input Generation, Constraint Filtering and Decision Making. The general pattern is
shown in Figure 6-1. This approach is closed. Before running the Decision Making
module, a dynamic system may need several runs of the Input Generation module,
applying the dynamic constraints that can be arisen. This number of runs of the
Input Generation module is proportional to the modifications (constraints) identified
from the system.

6.2.1 Input Generation

The Input Generation module of AdaptCont collects or generates the required pa-
rameters for making decisions about efficient resource allocation. These parameters
are:

• The input workload size.

• The input split size enforced by the application.

• The total number of available containers per each user.

• The wave size in which these containers may be run.

• The constraints introduced by users.

Some of these parameters are collected directly from the application. For instance,
the input workload size comes in every job request. Other parameters are more
complex to be generated. For instance, the number of waves w depends on the
number of input splits ns and the number of available containers per user nc, being
calculated as w = ns/nc.

6.2.2 Constraint Filtering

This stage is needed because clouds have a limited number of costly resources. Con-
straints may be imposed by the infrastructure, application and/or users.
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Infrastructure constraints are those constraints related to the limitation of the
cloud provider, since not always the number of resources is enough for fulfilling the
resource requests of all the applications and users.

Some constraints are enforced by applications. For instance, some applications
require a certain type of sequential containers. This is the case of MapReduce sys-
tems, where by default, containers of the first phase (map) need to finish before the
containers of the second phase (reduce) start [102, 60].

Finally, other constraints are defined by users. For instance, some users have a
limited capability for buying resources.

6.2.3 Decision Making

Based on the parameters coming from the previous modules, the Decision Making
module outputs the final resource allocation. In particular, this module decides the
minimum recommended container memory cRAM and CPU power cCPU per every
container. This decision depends on the particular problem addressed by these con-
tainers.

Once this module has decided these values for a specific application of a user, the
rest of the process is automatic, since all the containers of an application are equal.
This process has to be called for different applications or different users.

6.2.4 Predefined Containers

A possible improvement of AdaptCont is enabling the use of predefined containers
with different configurations (e.g. small, medium, large). This means that a cloud
has a pool of static containers that can be used for different user request. In this
way, it will not be necessary to trigger a new container, but a predefined one ready
to be used. This reduces the overhead of the resource allocation process during the
job submission. This feature should be part of the Decision Making module.

How can the framework define this pool of containers? First, it should be able
to identify the typical user requests in the system. These requests may be evaluated
from (i) previous (stored) monitoring values, or (ii) from other monitoring variables
measured at the same time, according to [93].

What happens if the container does not have the exact configuration we need?
In this case, the Decision Making module establishes a threshold. If the difference
between the required and existing configurations is below this threshold, the system
uses the already existing container. Otherwise, the system triggers a new container.

6.3 Case study: YARN application master

We have chosen as a case of study the analysis of a relevant type of a container in a
specific kind of cloud systems, that is, MapReduce-based clouds. Namely, the chosen
container is the application master in the next-generation MapReduce system called
YARN [101].
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Figure 6-2: Job flow messages in Hadoop YARN: A sequence diagram.

6.3.1 Background

YARN constitutes the new version of Apache Hadoop. This new implementation was
built with the aim of solving some of the problems shown by the old Hadoop version.
Basically, YARN is a resource management platform, that unlike the former Hadoop
release, provides greater scalability, higher efficiency and enables different frameworks
to efficiently share a cluster. YARN offers, among others, MapReduce capabilities.

The basic idea behind YARN is the separation between the two main operations of
the classic Hadoop master, resource management and job scheduling/monitoring, into
separate entities or daemons. The resource manager consists of two main components:
the scheduler and the application manager. While the scheduler’s duty is resource
allocation, the application manager accepts job submissions, and initiates the first
job container for the application master. After this, the job is managed by the
application master, which starts negotiating resources with the resource manager and
collaborates with the node managers to run and monitor its tasks. Finally, it informs
the resource manager that has completed, and releases its container. The resource
manager delivers the results to the client. A simple sequence of these steps is given
in Figure 6-2.

For each job submission, the application master configuration is static and does
not change for different scenarios. According to the state-of-the-art literature [68, 45,
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Figure 6-3: Workers containers monitored in waves by the application master con-
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19, 16, 46], most large-scale MapReduce clusters run small jobs. As we will show in
Section 6.4, even the smallest resource configuration of the application master exceeds
the requirements of these workloads. This implies a waste of resources, which could be
alleviated if the configuration is adapted to the workload size and the infrastructure
resources. Moreover, some big workloads could fail if the container size is not enough
for managing them. At large-scale level, this would have a higher impact. Therefore,
our goal is to choose an appropriate container for the application master.

6.3.2 AdaptCont applied to YARN

In order to optimize containers for the application master we will follow the same
pattern of the general framework, that is, AdaptCont.

The input generation module divides the workload input size into splits. The
YARN scheduler provides containers to users, according to the number of available
containers of the infrastructure each instant of time. As we mentioned above, the
input generation module calculates the number of waves from the number of input
splits and the number of available containers per user. Figure 6-3 shows how the
application master manages these waves.

Many constraints can be raised from the scheduler. An example of this is the phase
priority. It is well known that the map phase input is by default bigger or equal to
the reduce phase input [105]. This is one of the reasons why the number of mappers
is higher than the number of reducers. Due to this, as a reasonable constraint, the
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constraint filtering module prioritizes the number of mappers with regards to the
number of reducers.

Decision making module considers mainly two parameters, total workload and
wave sizes. Contrary to what it may seem at first sight, the type of applications does
not affect the resource allocation decision of our use case. Some applications could
have more memory, CPU or I/O requirements, influencing the number and types
of needed containers. However, this would only determine the size of the worker
containers, and in this case study, our scope is focused only on the master containers,
which contribute largely to the reliability of the application executions.

Decision making module uses two parameters: Ω and Ψ. The first parameter rep-
resents the minimum recommended memory size for an application master container
that manages one unit wave, wunit. Our goal is to calculate cRAM from the value of Ω,
being cRAM the recommended memory size for the application master. In the same
way, we aim to calculate cCPU as the recommended CPU power for the application
master, from Ψ, which is the minimum recommended CPU power for an application
master that manages wunit.

To calculate the memory, if the actual wave w is bigger than what could be handled
by Ω, that is, bigger than wunit, then we declare a variable λ that measures this wave
magnitude: λ = w/wunit. Now, it is easy to find the cRAM :

cRAM = λ ∗ Ω + Stdev, Stdev ∈ [0; Ω/2] (6.1)

Regarding the CPU power, the formula for cCPU is:

cCPU = λ ∗Ψ + Stdev, Stdev ∈ [0; Ψ/2] (6.2)

Figure 6-4 represents the AdaptCont modules, which are executed in the context
of different YARN daemons. Whereas the input generation and the decision making
modules are part of the application manager, the constraint filtering module is part
of the scheduler. The combination of both daemons forms the resource manager. The
resource manager has a complete knowledge about each user through the application
manager and the available resources through the scheduler daemon. When the ap-
plication manager receives a user request, the resource manager is informed about
the workload input. The scheduler informs the application manager of every impor-
tant modification regarding the monitored cluster. According to this, the application
manager reacts upon the user request, by optimizing the container for its application
master.

6.4 Experimental evaluation

We have performed a set of experiments to validate our approach and compare it with
YARN. These experiments have been made by means of a round-based simulator. In
order to make this evaluation, we have followed the methodology of Section 6.4.1.
Results of the evaluation are described in Section 6.4.2. Finally, the discussion about
these results is shown in Section 6.4.3.
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Scheduler Master
YARN Dynamic Pool

FIFO FIFO-YARN FIFO-Dynamic FIFO-Pool
Fair Fair-YARN Fair-Dynamic Fair-Pool

Capacity Capacity-YARN Capacity-Dynamic Capacity-Pool

Table 6.1: Methodology description, taking into account different schedulers and mas-
ters. FIFO: FIFO scheduler. Fair: Fair scheduler. Capacity: Capacity scheduler.
YARN: YARN master. Dynamic: Dynamic master. Pool: Predefined containers-
based master.

6.4.1 Methodology

To evaluate AdaptCont, we have considered three different schedulers and three dif-
ferent application master configurations, as is shown in Table 6.1. Below we give
details for all of them.
Scheduler. We have taken into account three important schedulers, already imple-
mented in YARN:

• FIFO scheduler. This was the first scheduling algorithm that was implemented
for MapReduce. It works on the principle that the master has a queue of jobs,
and it simply pulls the oldest job first.

• Fair scheduler. It assigns the same amount of resources (containers) to all the
workloads, so that on average every job gets an equal share of containers during
its lifetime.

• Capacity scheduler. It gives different amount of resources (containers) to dif-
ferent workloads. The bigger the workload is the more resources are allocated
to it.

Master. To compare YARN with AdaptCont, we use the following application master
configurations:

• YARN application master (YARN). This is the default implementation of the
application master in YARN.

• Dynamic master (Dynamic AdaptCont). This master container is adjusted
in accordance with AdaptCont. Namely, it calculates the memory and CPU,
according to the decision making module and only after this, it initiates the
master.

• Predefined containers-based master (Pool AdaptCont). As defined in Section
6.2.4, the resource manager has a pool of master containers, which can be
allocated depending on the workload size. This is an optional optimization of
AdaptCont.
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Workload. According to the job arrival time, we consider two additional sets of
experiments:

• Set-All. In this scenario, all the jobs are already in the queue of the scheduler.
We are going to combine this scenario with all the values of the Table 6.1, since
it is important to evaluate the approach under pressure, that is, when the load
reaches high values.

• Set-Random. This is a more realistic scenario, where jobs arrive at random
times. Again, this scenario is evaluated in combination with all the values
of the Table 6.1, in order to simulate the behavior of a common MapReduce
cluster.

An important parameter to take into account is the workload size. We introduce
two additional scenarios:

• Workload-Mixed. In this case, the workload size will be variable, ranging from
500 MB to 105 GB, taking (1) 500 MB, (2) 3.5 GB, (3) 7 GB, (4) 15 GB, (5) 30
GB, (6) 45 GB, (7) 60 GB, (8) 75 GB, (9) 90 GB, and (10) 105 GB as workload
size inputs. We have used these boundaries, because of the average workload
sizes of important production clusters. For instance, around 90% of workload
inputs in Facebook [19] are below 100 GB.

• Workload-Same. In this case, every input (10 workloads) is the same: 10 GB.
We have used this value, since, on average, the input workloads at Yahoo and
Microsoft [19] are under 14 GB.

Therefore, we evaluate AdaptCont with the values of the Table 6.1 and the 4
combinations from previous scenarios: Set All - Workload Mix, Set All - Workload
Same, Set Random - Workload Mix, and Set Random - Workload Same.
Constraints. In MapReduce, the application master has to manage both map and
reduce workers. The map phase input is always bigger or equal to the reduce phase
input [105]. This is one of the reasons why the number of mappers is bigger than the
number of reducers. On the other hand, both phases are run sequentially. Thus, we
can assume as constraint that the master container resources depend on the number
of mappers and not on the number of reducers.

In order to simulate a realistic scenario, we have introduced in our experiments a
partition failure that will impact around 10% of the cluster size. We assume that this
failure appears in the fifth iteration. This constraint forces AdaptCont to react in
real-time and adapt itself to a new execution environment, having to make decisions
about future resource allocations.
Setup. In our experiments, 250 containers are used for worker tasks (mappers and
reducers). This number of containers is sufficient to evaluate the approach, consider-
ing 25 containers per workload. We consider that every map and reduce container is
the same, and can execute a particular portion (split) of the workload. Each task runs
on a container that has 1024 MB RAM and 1 virtual core. According to [4, 61, 110],
a physical CPU core is capable of giving optimal performance of the container, if
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simultaneously processes 2 containers at most. Therefore, we take 1 CPU core as
equivalent to 2 virtual cores.

Our goal is to evaluate the resource utilization of the application masters, in terms
of CPU and RAM. To get this, we consider an isolated set of resources oriented only to
application masters. In this way, it will be easier to measure the impact of AdaptCont
in saving resources.

6.4.2 Results

In this section, we compare the CPU and memory efficiency of YARN vs Dynamic
AdaptCont and Pool AdaptCont. Before that, we analyze the wave behavior of the
10 workloads.
Wave behavior. Figure 6-5 represents the resource allocation (maximum number
of container or wave size) for the combination we have mentioned before: Set All
- Workload Mix, Set All - Workload Same, Set Random - Workload Mix, and Set
Random - Workload Same.

Figure 6-5a shows different workload sizes with the same arrival time (already in
the scheduler queue). The experiments demonstrate that a maximum wave is depen-
dent on the workload size and the scheduler. Regarding the FIFO scheduler, since
the queue order is formed by the smallest workload first, for these small workloads,
the maximum wave is represented by the needed containers. For instance, the first
workload needs only 8 containers. This number of containers is calculated dividing
the workload size by the split size (64 MB). These 8 containers are provided by the
infrastructure, and this is the case of the second workload (56 containers), and the
third workload (112 containers). For the fourth workload, the infrastructure is not
capable to provide the needed containers, which only has 74 containers in the first
iteration, that is, 250− (8 + 56 + 112). The fourth workload needs 240 containers in
total. Thus, the remaining containers (240 − 74 = 166) will be provided in the next
iteration.

In the second iteration, since the first three workloads have finished, the scheduler
will provide 166 containers to the fourth workload and the rest (250 − 166 = 84)
to the fifth workload. This process is repeated until all the workloads are given the
necessary containers and every job has terminated. As we can notice, the maximum
wave for the latest workloads reaches higher amount of allocated containers, since
the workload is bigger, and in most of the cases the scheduler is busy with a unique
job. Although initially the infrastructure has 250 containers, from the fifth iteration
there is a slight decrease (225), due to the partition failure (10% of the resources).
This only affects the workloads not having finished before this iteration (in this case,
fifth).

The main drawback of the FIFO scheduler is that it may delay the completion
time of the smallest jobs, especially if they arrive late to the queue. In general, this
scheduler is not fair in the resource allocation and depends exclusively on the arrival
time.

Regarding the fair scheduler, this scheduler allocates the same number of contain-
ers to all the workloads and consequently to all the users, that is, 250/10 = 25. The
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Figure 6-5: Wave behavior: Wave size according to the scheduler and the workload
type.
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partition failure forces the fair scheduler to decrease the number of containers to 22
(225/10) from the fifth iteration.

With regards to the capacity scheduler, this scheduler takes advantage of available
resources once some jobs have finished. At the beginning, it behaves like the fair
scheduler. However, when some small jobs have terminated, the available resources
can be reallocated to the rest of workloads. This is the reason why the biggest
workloads in the queue get a higher number of containers. As in the previous case,
the partition failure also implies a slight decrease in the number of containers from
the fifth iteration.

Figure 6-5b represents the same mixed workloads but when they arrive randomly
to the scheduler queue. In our case, the random selection injects the workloads in
this order: (9), (3), (2), (1), (7), (10), (6), (8), (4), (5). The first workload (9) is
injected in the first iteration, the second workload (3) in the second iteration and so
on. Clearly, the main differences are noted in the FIFO scheduler, because the arrival
time of the workloads is different and now one of the biggest workloads (9) appears
in first place.

The other subplots of Figure 6-5 show the experimental results of the same work-
loads with an input of 10 GB, This input requires a static number of containers. In
this case, 160 containers.

In Figure 6-5c, all the jobs have arrived to the queue. In this scenario, the FIFO
allocation oscillates between the maximum wave of 160 containers and the smallest
wave of 90 containers (250 − 160). This oscillation is caused by the allocation of
resources to the previous workload, which does not leave enough resources for the
next one and then the cycle is repeated again.

In this case, the fair and capacity schedulers have the same behavior, since all the
workloads are equal.

Figure 6-5d shows the number of containers for the same workload with random
arrival. The difference of this scenario versus the scenario shown in Figure 6-5c is
twofold:

1. The arrival of these jobs is consecutive. In every iteration, a job arrives. Due to
this, the FIFO scheduler is forced to wait after each round for a new workload,
even though at every round there are available resources (250− 160 = 90), not
allocated to any job. Thus, the FIFO scheduler always allocates 160 containers
in every iteration.

2. Whereas in the previous scenario, the fair and capacity schedulers behaves the
same, in this case, the capacity scheduler acts similar to the FIFO scheduler.
This is because the capacity scheduler adapts its decisions to the number of
available resources, which is enough in every moment for addressing the re-
quirements of the jobs (160 containers). Thus, the capacity scheduler achieves
a better completion time, compared to the fair scheduler.

According to this analysis, we can conclude that the wave behavior and size are
decisive in the application master configuration.
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Figure 6-6: Memory usage and master type versus scheduler.

Memory usage. Figure 6-6 shows for the 4 scenarios the total memory used by the
three approaches: YARN, Dynamic AdaptCont and Pool AdaptCont.

In the case of YARN, we have deployed the default configuration, choosing the
minimum memory allocation for the application master (1024 MB).

The Dynamic AdaptCont-based application master memory is dependent on the
waves size. If the wave size is under 100, the Decision Making module allocates a
minimum recommended memory of 256 MB. For each increase of 100 in the wave
size, the memory is doubled. The reasons behind this are:

1. A normal Hadoop task does not need more than 200 MB [19], and this is even
clearer in the case of the application master.

2. As most of the jobs are small [19, 16, 46], consequently the maximum number
of mappers is also small and therefore, the application master requires less
memory.

3. The minimum recommended memory by Hortonworks [61] is 256 MB.
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The Pool AdaptCont-based application master works in a different way, consti-
tuting an alternative between the YARN master and the Dynamic master. This
application master has three default configurations: small, medium and big. The
small master has 512 MB of memory, for all small jobs that need a maximum of 250
containers. The medium master has 1024 MB, as it is the default minimum YARN
setting. In order to deal with big waves, the big configuration has 2048 MB.

As we can see in Figure 6-6, YARN is outperformed by both AdaptCont ap-
proaches. YARN always consumes 10GB, not depending on the different use cases.
For instance, in Figure 6-6a, Dynamic AdaptCont has a memory usage of 6144 MB
versus 10 GB in YARN, achieving 40% memory improvement. In this case, Pool
AdaptCont only uses 5120 MB, i.e. 50% improvement compared to YARN. This dif-
ference between Dynamic AdaptCont and Pool AdaptCont for the FIFO scheduler is
due to the way of providing memory in both approaches. If the workload needs 250
containers, Dynamic AdaptCont provides 256d(250/100)e MB, that is, 256 ∗ 3 = 768
MB. In the same scenario, Pool AdaptCont provides 512 MB, corresponding to the
small size configuration.

In general, Dynamic AdaptCont is the best approach in terms of memory usage,
except in the case of the FIFO scheduler, where the performance is close and slightly
worse than the performance of Pool AdaptCont. In the case of Fair and Capacity
schedulers, Dynamic AdaptCont is the best alternative, achieving on average 75%
and 67.5% improvement compared to YARN, versus 50% improvement provided by
Pool AdaptCont.
CPU usage. The CPU usage is another relevant parameter to take into account. In
order to measure it, we have correlated memory and CPU, considering that we need
higher CPU power to process a larger amount of data, stored in memory.

In YARN, you can assign a value ranging from 1 up to 32 of virtual cores for
the application master. This is also the possible interval allocation for every other
container. According to [4], 32 is the maximum value. In our experiments, we use
the minimum value for the YARN master (1 virtual core for its container) per 1024
MB.

For the Dynamic AdaptCont, the Decision Making module increases the number
of virtual cores after two successive increments of 256 MB of memory. This decision is
based on the above-mentioned methodology, which states that a physical CPU core is
capable of giving optimal performance of the container, if simultaneously processes 2
containers at most [4, 61, 110]. To be conservative, we address the smallest container,
that is, a container of 256 MB. For instance, if the memory usage is 768 MB, the chosen
number of virtual cores is 2.

The same strategy is valid for the Pool AdaptCont, assuming 1 virtual core for
small containers, 2 virtual cores for medium containers and 3 virtual cores for large
containers.

Due to this policy, the CPU does not change so abruptly as the memory for
Dynamic and Pool AdaptCont. Thus, as is shown in Figure 6-7, both approaches
behave similar, except in the case of FIFO with Workload Mix. This was previously
justified in the memory usage evaluation. As the CPU is proportional to the memory
usage, the behavior of Dynamic AdaptCont with FIFO for Workload Mix is again
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Figure 6-7: CPU usage and master type versus scheduler.
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repeated in the case of CPU.
In most of the cases, the improvement of both Dynamic and Pool AdaptCont

against YARN reaches 50%.

6.4.3 Discussion

In this section, we discuss what combination of approaches and schedulers can be
beneficial in common scenarios.

As a result of the experiments, we can conclude that YARN used by default is not
appropriate for optimizing the use of MapReduce-based clouds, due to the waste of
resources.

In the presence of heavy and known in advanced workloads (this is the usual case
of scientific workloads), according to our results, the best recommended strategy is
to use Dynamic AdaptCont combined with FIFO scheduler.

However, if we have limited resources per user, a better choice could be Dynamic
AdaptCont combined with Fair scheduler. This scheduler allocates a small set of
resources to every workload, improving the overall performance.

In a scenario where we have a mixture of large and small workloads, the choice
should be Dynamic AdaptCont combined with Capacity scheduler. This is due to
the adaptability of this scheduler with regards to the input workload and available
resources.

Finally, as shown in the experiments, if our focus is on CPU and not in memory,
we can decide to use Pool AdaptCont (combined with any schedulers) instead of the
Dynamic approach.

6.5 Summary
This chapter proposes AdaptCont, a novel optimization framework for resource alloca-
tion at the container level, based on feedback systems. As part of the framework, two
selection methodologies have been introduced, Dynamic AdaptCont and Pool Adapt-
Cont. Whereas Dynamic AdaptCont calculates the exact amount of resources per
each container, Pool AdaptCont has the ability to choose a predefined container from
a pool of available configurations. The evaluation results demonstrate that Adapt-
Cont outperforms the default resource allocation mechanism of YARN in terms of
RAM and CPU usage, the gains ranging from 40% to 75% for memory usage and
from 15% to 50% for CPU utilization. Our experiments have allowed us to use an ex-
tensive methodology, including 3 different schedulers, 10 different workloads, random
arrival times and the introduction of partition failures.

To the best of our knowledge, this is the first contribution that acknowledges
the impact of resource utilization problem in MapReduce approaches at container
level, and additionally proposes a solution to this problem by means of an alternative
framework.
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Chapter 7

Conclusions and future work

This chapter summarizes the main contributions, discusses the future directions and
introduces the main publications resulting from this thesis.

7.1 Conclusions

Data-intensive frameworks, such as Hadoop MapReduce, have as main goal the pro-
cessing of an enormous amount of data in a short time, by transmitting the computa-
tion where the data resides. In failure-free scenarios, these frameworks usually achieve
good results. However, this is not a realistic scenario. In addition, these frameworks
exhibit some fault tolerance and dependability techniques as built-in features.

In general, dependability improvements are known to imply additional resource
costs. This is reasonable and providers offering these infrastructures are aware of
this. However, not all the approaches provide the same tradeoff between fault tol-
erant capabilities (or more generally, reliability capabilities) and cost. In this the-
sis, we try to address the coexistence between reliability and resource efficiency in
MapReduce-based systems, looking for methodologies that introduce the minimal
cost, guaranteeing an appropriate level of reliability.

In particular, in the context of this thesis we have the following three contributions,
which answers directly to the three research questions formulated in the introduction:

Formalization of the failure detector abstraction in MapReduce Apart from
the crash-stop failures, omission failures represent an important drawback in data-
intensive processing frameworks. In these frameworks, omission failures are caused by
slow tasks, known as stragglers, which could heavily jeopardize the workload perfor-
mance. As we can deduce from the state-of-the-art, to address the omission failures
in MapReduce-based systems, most of the current contributions have preferred to
explore and extend the speculative execution mechanism. Other alternatives have
based their contributions in doubling the computing resources for most of the tasks.
Nevertheless, none of these approaches has researched a fundamental aspect related
to the detection and further solving of the the omission failures (stragglers), that is,
the timeout service adjustment.
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In this thesis, particularly in the Chapter 4, we have studied the failure omission
drawbacks in MapReduce systems, formalizing their failure detector abstraction by
means of three different algorithms for defining the timeout. The first abstraction,
called High relax failure detector (HR-FD), acts as a static alternative to the default
timeout, but is able to estimate the completion time for the user workload. Its static
adjustment is particularly efficient for small workload requests, which are a majority
of them. The second abstraction, called Medium relax failure detector (MR-FD),
dynamically modify the timeout, according to the progress score of each workload.
Finally, taking into account that some of the user requests are strictly deadline-
bounded, we have introduced the third abstraction, called Low relax failure detector
(LR-FD), which is able to intersect the MapReduce dynamic timeout with an external
monitoring system, in order to enforce more accurate failure detections.

Whereas HR-FD shows performance improvements for most of the user request (in
particular, small workloads), MR-FD and LR-FD enhances significantly the current
timeout selection, for any kind of scenario, independent of the workload type and
failure injection time.

Diarchy: peer management for solving the MapReduce single points of fail-
ure Single point of failure is a common drawback in distributed computing systems.
Since the earliest MapReduce-based systems, these frameworks have been strongly de-
pendent on a single daemon, that is, the JobTracker. Hadoop YARN has changed
the architecture of Hadoop (splitting the functionalities of the JobTracker between
the Resource Manager and the Application Master) in order to provide scalability
and remove the single point of failure presented by the JobTracker. However, the
Resource Manager and the Application Master now become single points of failure in
the YARN architecture.

In this thesis, particularly in the Chapter 5, we have formalized an alternative
failure handling model for any MapReduce single point of failure. Regarding this,
we have proposed a novel framework, called Diarchy, different from classical standby
and checkpointing methodologies, that tries to enhance the MapReduce reliability, by
means of the sharing of responsibilities between two master peers. In addition, we
have instantiated a case study with respect to Diarchy, by addressing the application
master failures within Hadoop YARN.

According to the experimental evaluations, Diarchy shows better performance ef-
ficiency when compared to Hadoop YARN, in every experimental scenario, regardless
of the cluster size, workload type, or average failure rate.

AdaptCont: feedback-based resource allocation system for MapReduce
Many production clouds are starting to make use of containers as resource alloca-
tion facility. Due to their characteristics, they are especially useful for running single
tasks of MapReduce-based systems. However, because they are in its early stage of
research, the container-based resource allocation of the state-of-the-art approaches is
not particularly efficient. We have performed a fine-grain analysis of the common re-
source allocation of MapReduce-based systems, that is, at container level. As a result,
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we notice that its resource utilization is suboptimal. This could cause a considerable
performance degradation at large-scale, and even jeopardize reliability.

In this thesis, particularly in the Chapter 6, we have introduced a novel ap-
proach (AdaptCont) for resource allocation at container level, based on a closed-loop
feedback-based system. In addition, we have instantiated AdaptCont for a particular
case study, the application master container of Hadoop YARN.

The evaluation results indicate that AdaptCont brings substantial benefits in
terms of resource utilization compared to the default resource allocation mechanism
of Hadoop YARN in different setups, regardless of cluster size, scheduler policies and
workload type.

7.2 Future work

Linked to the three main contributions, there are some research work lines which
constitute the future directions of this thesis. In this section we describe these lines.

Instantiation of the failure detector abstraction This thesis has defined an
abstract failure detector to be used in data-intensive processing frameworks, and
particularly, in MapReduce-based systems. We will instantiate this abstraction for
Hadoop, in order to enhance the behavior of this framework in terms of failure de-
tection and its relation with the default timeout.

This is particularly important in the case of production clouds. Indeed, many
SLAs are dependent on the timing assumptions of the data-intensive computing sys-
tems. Any decision making process made in this scenario should be based on the
knowledge of the accuracy boundaries of these systems. This constitutes an important
challenge in order to achieve that the data-intensive computing systems constitute a
fierce competitor in some fields where relational database systems have been ruling
for many decades.

Extension of the Diarchy approach to other MapReduce daemons, other in-
frastructures and other frameworks The Diarchy algorithm has been designed
to work on every MapReduce daemon. Experimentally we have tested the Diarchy
approach for the application master daemon, as use case. Nevertheless, it is expected
to have wider application in the rest of the MapReduce daemons. Among others, it
would be interesting to extend this approach to increase the scheduler or application
manager reliability, to study how they perform under high concurrency and with un-
stable infrastructures, such as volunteering computing systems. In the near future,
we are also planning to research and evaluate the behavior of Diarchy in different
environments, including multiple cloud infrastructures, with a particular emphasis on
how Diarchy performs when heterogeneous environments, such as federated clouds,
are introduced as partial resources of the MapReduce framework. Finally, it would
be desirable also to use Diarchy in other distributed computing frameworks with the
aim of providing reliability, such as those based on master-slave model. Due to the
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simplicity and performance of Diarchy, this could be implemented with minor cost,
especially in those infrastructures with highly powerful networks.

Extension of the AdaptCont approach to worker tasks The AdaptCont op-
timization framework has been designed to be used in every MapReduce-based task.
Experimentally we have evaluated AdaptCont with the application master containers,
which are indeed one of the most important and complex containers within Hadoop
YARN. However, the use cases where AdaptCont could introduce performance bene-
fits are many. The main goal would be to adapt this framework for different container
requests of MapReduce worker tasks. A particular challenging work would also be
the deployment of AdaptCont on real distributed infrastructures.

Adaptation of AdaptCont to VMs The container-based resource allocation is
performing really well. However, in many environments, VMs still represent the de
facto standard of virtualization. At this moment, the container advancements have
not reached the point where they could easily emulate a complete virtualized environ-
ment. Due to this, we envision the container co-living with VMs. And therefore, at
long term, we expect to explore AdaptCont for VMs, in particular for allocating raw
VMs to different user requests. We believe that fine-tuning a VM can be optimized,
driven by requirements coming from an intersection between performance, reliability
and energy-efficiency.

7.3 Publications

Part of the work detailed in this thesis has led to the following peer reviewed publi-
cations:

• Bunjamin Memishi, María S. Pérez, and Gabriel Antoniu. Feedback-based re-
source allocation in MapReduce-based systems. Submitted for publication as
Article in Scientific Programming, 2016.

• Bunjamin Memishi, María S. Pérez, and Gabriel Antoniu. Failure detector
abstractions for MapReduce-based systems. Submitted for publication as Article
in Information Sciences, 2016.

• Bunjamin Memishi, María S. Pérez, and Gabriel Antoniu. Dynamic Containers
for Optimizing MapReduce-based Systems. Submitted for publication as Pro-
ceedings paper in International Conference On Computational Science (ICCS)
2016.

• Bunjamin Memishi, Shadi Ibrahim, María S. Pérez, and Gabriel Antoniu. Fault
Tolerance in MapReduce: A Survey. Book chapter in Resource Management
for Big Data Platforms and Applications. Studies in Big Data Springer Book
series. To appear in Springer, Summer 2016.
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Database Management (ADMDM) Book series. IGI Global, Pages 1-22, Jan-
uary 2016.
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