MapReduce: Simplified Data Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat Google, Inc.

Motivation: Large Scale Data Processing

Many tasks: Process lots of data to produce other data Want to use hundreds or thousands of CPUs

... but this needs to be easy

MapReduce provides:

- Automatic parallelization and distribution
- Fault-tolerance
- I/O scheduling
- Status and monitoring

Programming model

Input & Output: each a set of key/value pairs

Programmer specifies two functions:

```
map (in_key, in_value) -> list(out_key,
intermediate_value)
```

- Processes input key/value pair
- Produces set of intermediate pairs

```
reduce (out_key, list(intermediate_value)) -> list
(out_value)
```

- Combines all intermediate values for a particular key
- Produces a set of merged output values (usually just one)

Inspired by similar primitives in LISP and other languages

Map y Fold

Data-Intensive Text Processing with MapReduce

Jimmy Lin and Chris Dyer. University of Maryland

Example: Count word occurrences

```
map(String input key, String input value):
  // input key: document name
  // input value: document contents
  for each word w in input value:
    EmitIntermediate(w, "1");
reduce(String output_key, Iterator intermediate_values):
  // output key: a word
  // output_values: a list of counts
  int result = 0;
  for each v in intermediate values:
    result += ParseInt(v);
  Emit(AsString(result));
```

Pseudocode: See appendix in paper for real code

Model is Widely Applicable

MapReduce Programs In Google Source Tree

Example uses:

distributed grep document clustering machine learning

distributed sort

web link-graph reversal term-vector per host web access log stats inverted index construction statistical machine translation

6

Home Prev Next

Implementation Overview

Typical cluster:

- 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
- Limited bisection bandwidth
- Storage is on local IDE disks
- GFS: distributed file system manages data (SOSP'03)
- Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines

Implementation is a C++ library linked into user programs

Execution Página 1 de 1

Home Prev Next 7

Execution

Parallel Execution Página 1 de 1

Home Prev Next 8

Parallel Execution

Visión física de ejecución Google-MR

<u>Home</u> <u>Prev</u> <u>Next</u> 9

Task Granularity And Pipelining

Fine granularity tasks: many more map tasks than machines

- Minimizes time for fault recovery
- Can pipeline shuffling with map execution
- Better dynamic load balancing

Often use 200,000 map/5000 reduce tasks w/ 2000 machines

Fault tolerance: Handled via re-execution

- On worker failure:
 - Detect failure via periodic heartbeats
 - Re-execute completed and in-progress map tasks
 - Re-execute in progress reduce tasks
 - Task completion committed through master
- Master failure:
 - Could handle, but don't yet (master failure unlikely)

Robust: lost 1600 of 1800 machines once, but finished fine

Semantics in presence of failures: see paper

Refinement: Redundant Execution

Slow workers significantly lengthen completion time

- Other jobs consuming resources on machine
- Bad disks with soft errors transfer data very slowly
- Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup copies of tasks

Whichever one finishes first "wins"

Effect: Dramatically shortens job completion time

Refinement: Locality Optimization

Master scheduling policy:

- Asks GFS for locations of replicas of input file blocks
- Map tasks typically split into 64MB (== GFS block size)
- Map tasks scheduled so GFS input block replica are on same machine or same rack

Effect: Thousands of machines read input at local disk speed

Without this, rack switches limit read rate

Refinement: Skipping Bad Records

Map/Reduce functions sometimes fail for particular inputs

- Best solution is to debug & fix, but not always possible
- On seg fault:
 - Send UDP packet to master from signal handler
 - Include sequence number of record being processed
- If master sees two failures for same record:
 - Next worker is told to skip the record

Effect: Can work around bugs in third-party libraries

25

Home Prev Next

Other Refinements (see paper)

- Sorting guarantees within each reduce partition
- Compression of intermediate data
- Combiner: useful for saving network bandwidth
- Local execution for debugging/testing
- User-defined counters

Visión lógica de ejecución Hadoop-MR

Data-Intensive Text Processing with MapReduce

Jimmy Lin and Chris Dyer. University of Maryland

Visión lógica Hadoop-MR con combiners

Data-Intensive Text Processing with MapReduce. Lin & Dyer.

Performance Página 1 de 1

Home Prev Next 26

Performance

Tests run on cluster of 1800 machines:

- 4 GB of memory
- Dual-processor 2 GHz Xeons with Hyperthreading
- Dual 160 GB IDE disks
- Gigabit Ethernet per machine
- Bisection bandwidth approximately 100 Gbps

Two benchmarks:

MR_Grep Scan 10¹⁰ 100-byte records to extract records matching a rare

pattern (92K matching records)

MR_Sort Sort 10¹⁰ 100-byte records (modeled after TeraSort benchmark)

MR_Grep Página 1 de 1

Home Prev Next 27

MR_Grep

Locality optimization helps:

- 1800 machines read 1 TB of data at peak of ~31 GB/s
- Without this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs

MR_Sort

28

Home Prev Next

MR_Sort

- Backup tasks reduce job completion time significantly
- System deals well with failures

Experience: Rewrite of Production Indexing System

Rewrote Google's production indexing system using MapReduce

- Set of 10, 14, 17, 21, 24 MapReduce operations
- New code is simpler, easier to understand
- MapReduce takes care of failures, slow machines
- Easy to make indexing faster by adding more machines

Usage: MapReduce jobs run in August 2004

Number of jobs	29,423
Average job completion time	634 secs
Machine days used	79,186 days
Input data read	3,288 TB
Intermediate data produced	758 TB
Output data written	193 TB
Average worker machines per job	157
Average worker deaths per job	1.2
Average map tasks per job	3,351
Average reduce tasks per job	55
Unique map implementations	395
Unique <i>reduce</i> implementations	269
Unique <i>map/reduce</i> combinations	426

Conclusions

- MapReduce has proven to be a useful abstraction
- Greatly simplifies large-scale computations at Google
- Fun to use: focus on problem, let library deal w/ messy details

Thanks to Josh Levenberg, who has made many significant improvements and to everyone else at Google who has used and helped to improve MapReduce.