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Motivation: Large Scale Data Processing
Many tasks: Process lots of data to produce other data 
Want to use hundreds or thousands of CPUs 

◾ ... but this needs to be easy 

MapReduce provides: 

◾ Automatic parallelization and distribution 
◾ Fault-tolerance 
◾ I/O scheduling 
◾ Status and monitoring 
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Programming model
Input & Output: each a set of key/value pairs 
Programmer specifies two functions: 
map (in_key, in_value) -> list(out_key, 
intermediate_value)

◾ Processes input key/value pair 
◾ Produces set of intermediate pairs 

reduce (out_key, list(intermediate_value)) -> list
(out_value)

◾ Combines all intermediate values for a particular key 
◾ Produces a set of merged output values (usually just one) 

Inspired by similar primitives in LISP and other languages 
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Example: Count word occurrences

  map(String input_key, String input_value): 
    // input_key: document name 
    // input_value: document contents 
    for each word w in input_value: 
      EmitIntermediate(w, "1"); 

  reduce(String output_key, Iterator intermediate_values): 
    // output_key: a word 
    // output_values: a list of counts 
    int result = 0; 
    for each v in intermediate_values: 
      result += ParseInt(v); 
    Emit(AsString(result)); 

Pseudocode: See appendix in paper for real code 
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Model is Widely Applicable
MapReduce Programs In Google Source Tree 

Example uses: 
distributed grep distributed sort web link-graph reversal 
term-vector per host web access log stats inverted index construction 
document clustering machine learning statistical machine translation 
... ... ... 
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Implementation Overview
Typical cluster: 

◾ 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory 
◾ Limited bisection bandwidth 
◾ Storage is on local IDE disks 
◾ GFS: distributed file system manages data (SOSP'03) 
◾ Job scheduling system: jobs made up of tasks, scheduler assigns 

tasks to machines 

Implementation is a C++ library linked into user programs 
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Execution
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Parallel Execution

Página 1 de 1Parallel Execution



MapReduce
26

Fernando Pérez Costoya

Visión física de ejecución Google-MR



Home Prev Next 9 

Task Granularity And Pipelining
Fine granularity tasks: many more map tasks than machines 

◾ Minimizes time for fault recovery 
◾ Can pipeline shuffling with map execution 
◾ Better dynamic load balancing 

Often use 200,000 map/5000 reduce tasks w/ 2000 machines 
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Fault tolerance: Handled via re-execution

◾ On worker failure: 
◦ Detect failure via periodic heartbeats 
◦ Re-execute completed and in-progress map tasks 
◦ Re-execute in progress reduce tasks 
◦ Task completion committed through master 

◾ Master failure: 
◦ Could handle, but don't yet (master failure unlikely) 

Robust: lost 1600 of 1800 machines once, but finished fine 

Semantics in presence of failures: see paper 
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Refinement: Redundant Execution
Slow workers significantly lengthen completion time 

◾ Other jobs consuming resources on machine 
◾ Bad disks with soft errors transfer data very slowly 
◾ Weird things: processor caches disabled (!!) 

Solution: Near end of phase, spawn backup copies of tasks 

◾ Whichever one finishes first "wins" 

Effect: Dramatically shortens job completion time 
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Refinement: Locality Optimization
Master scheduling policy: 

◾ Asks GFS for locations of replicas of input file blocks 
◾ Map tasks typically split into 64MB (== GFS block size) 
◾ Map tasks scheduled so GFS input block replica are on same 

machine or same rack 

Effect: Thousands of machines read input at local disk speed 

◾ Without this, rack switches limit read rate 
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Refinement: Skipping Bad Records
Map/Reduce functions sometimes fail for particular inputs 

◾ Best solution is to debug & fix, but not always possible 

◾ On seg fault: 
◦ Send UDP packet to master from signal handler 
◦ Include sequence number of record being processed 

◾ If master sees two failures for same record: 
◦ Next worker is told to skip the record 

Effect: Can work around bugs in third-party libraries 
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Other Refinements (see paper)

◾ Sorting guarantees within each reduce partition 
◾ Compression of intermediate data 
◾ Combiner: useful for saving network bandwidth 
◾ Local execution for debugging/testing 
◾ User-defined counters 
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Performance
Tests run on cluster of 1800 machines: 

◾ 4 GB of memory 
◾ Dual-processor 2 GHz Xeons with Hyperthreading 
◾ Dual 160 GB IDE disks 
◾ Gigabit Ethernet per machine 
◾ Bisection bandwidth approximately 100 Gbps 

Two benchmarks: 
MR_Grep Scan 1010 100-byte records to extract records matching a rare 

pattern (92K matching records) 
MR_Sort Sort 1010 100-byte records (modeled after TeraSort benchmark) 
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MR_Grep

Locality optimization helps: 

◾ 1800 machines read 1 TB of data at peak of ~31 GB/s 
◾ Without this, rack switches would limit to 10 GB/s 

Startup overhead is significant for short jobs 
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MR_Sort

◾ Backup tasks reduce job completion time significantly 
◾ System deals well with failures 

Normal No backup tasks 200 processes killed
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Experience: Rewrite of Production Indexing System
Rewrote Google's production indexing system using MapReduce 

◾ Set of 10, 14, 17, 21, 24 MapReduce operations 
◾ New code is simpler, easier to understand 
◾ MapReduce takes care of failures, slow machines 
◾ Easy to make indexing faster by adding more machines 
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Usage: MapReduce jobs run in August 2004
Number of jobs 29,423 
Average job completion time 634  secs 
Machine days used 79,186  days 

Input data read 3,288  TB 
Intermediate data produced 758  TB 
Output data written 193  TB 

Average worker machines per job 157 
Average worker deaths per job 1.2 
Average map tasks per job 3,351 
Average reduce tasks per job 55 

Unique map implementations 395 
Unique reduce implementations 269 
Unique map/reduce combinations 426 
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Conclusions

◾ MapReduce has proven to be a useful abstraction 
◾ Greatly simplifies large-scale computations at Google 
◾ Fun to use: focus on problem, let library deal w/ messy details 

Thanks to Josh Levenberg, who has made many significant improvements and to 
everyone else at Google who has used and helped to improve MapReduce.
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