
Home Prev Next 1

MapReduce:
Simplified Data Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat
Google, Inc.

Página 1 de 1MapReduce:Simplified Data Processing on Large Clusters

Home Prev Next 2

Motivation: Large Scale Data Processing
Many tasks: Process lots of data to produce other data
Want to use hundreds or thousands of CPUs

◾ ... but this needs to be easy

MapReduce provides:

◾ Automatic parallelization and distribution
◾ Fault-tolerance
◾ I/O scheduling
◾ Status and monitoring

Página 1 de 1Motivation: Large Scale Data Processing

Home Prev Next 3

Programming model
Input & Output: each a set of key/value pairs
Programmer specifies two functions:
map (in_key, in_value) -> list(out_key,
intermediate_value)

◾ Processes input key/value pair
◾ Produces set of intermediate pairs

reduce (out_key, list(intermediate_value)) -> list
(out_value)

◾ Combines all intermediate values for a particular key
◾ Produces a set of merged output values (usually just one)

Inspired by similar primitives in LISP and other languages

Página 1 de 1Programming model

MapReduce
8

Fernando Pérez Costoya

Map y Fold

Data-Intensive Text Processing with MapReduce

Jimmy Lin and Chris Dyer. University of Maryland

Home Prev Next 4

Example: Count word occurrences

 map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents
 for each word w in input_value:
 EmitIntermediate(w, "1");

 reduce(String output_key, Iterator intermediate_values):
 // output_key: a word
 // output_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));

Pseudocode: See appendix in paper for real code

Página 1 de 1Example: Count word occurrences

Home Prev Next 5

Model is Widely Applicable
MapReduce Programs In Google Source Tree

Example uses:
distributed grep distributed sort web link-graph reversal
term-vector per host web access log stats inverted index construction
document clustering machine learning statistical machine translation
...

Página 1 de 1Model is Widely Applicable

Home Prev Next 6

Implementation Overview
Typical cluster:

◾ 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
◾ Limited bisection bandwidth
◾ Storage is on local IDE disks
◾ GFS: distributed file system manages data (SOSP'03)
◾ Job scheduling system: jobs made up of tasks, scheduler assigns

tasks to machines

Implementation is a C++ library linked into user programs

Página 1 de 1Implementation Overview

Home Prev Next 7

Execution

Página 1 de 1Execution

Home Prev Next 8

Parallel Execution

Página 1 de 1Parallel Execution

MapReduce
26

Fernando Pérez Costoya

Visión física de ejecución Google-MR

Home Prev Next 9

Task Granularity And Pipelining
Fine granularity tasks: many more map tasks than machines

◾ Minimizes time for fault recovery
◾ Can pipeline shuffling with map execution
◾ Better dynamic load balancing

Often use 200,000 map/5000 reduce tasks w/ 2000 machines

Página 1 de 1Task Granularity And Pipelining

Home Prev Next 21

Fault tolerance: Handled via re-execution

◾ On worker failure:
◦ Detect failure via periodic heartbeats
◦ Re-execute completed and in-progress map tasks
◦ Re-execute in progress reduce tasks
◦ Task completion committed through master

◾ Master failure:
◦ Could handle, but don't yet (master failure unlikely)

Robust: lost 1600 of 1800 machines once, but finished fine

Semantics in presence of failures: see paper

Página 1 de 1Fault tolerance: Handled via re-execution

Home Prev Next 22

Refinement: Redundant Execution
Slow workers significantly lengthen completion time

◾ Other jobs consuming resources on machine
◾ Bad disks with soft errors transfer data very slowly
◾ Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup copies of tasks

◾ Whichever one finishes first "wins"

Effect: Dramatically shortens job completion time

Página 1 de 1Refinement: Redundant Execution

Home Prev Next 23

Refinement: Locality Optimization
Master scheduling policy:

◾ Asks GFS for locations of replicas of input file blocks
◾ Map tasks typically split into 64MB (== GFS block size)
◾ Map tasks scheduled so GFS input block replica are on same

machine or same rack

Effect: Thousands of machines read input at local disk speed

◾ Without this, rack switches limit read rate

Página 1 de 1Refinement: Locality Optimization

Home Prev Next 24

Refinement: Skipping Bad Records
Map/Reduce functions sometimes fail for particular inputs

◾ Best solution is to debug & fix, but not always possible

◾ On seg fault:
◦ Send UDP packet to master from signal handler
◦ Include sequence number of record being processed

◾ If master sees two failures for same record:
◦ Next worker is told to skip the record

Effect: Can work around bugs in third-party libraries

Página 1 de 1Refinement: Skipping Bad Records

Home Prev Next 25

Other Refinements (see paper)

◾ Sorting guarantees within each reduce partition
◾ Compression of intermediate data
◾ Combiner: useful for saving network bandwidth
◾ Local execution for debugging/testing
◾ User-defined counters

Página 1 de 1Other Refinements (see paper)

MapReduce
15

Fernando Pérez Costoya

Visión lógica de ejecución Hadoop-MR

Data-Intensive Text Processing with MapReduce

Jimmy Lin and Chris Dyer. University of Maryland

MapReduce
16

Fernando Pérez Costoya

Visión lógica Hadoop-MR con combiners

Data-Intensive Text Processing with MapReduce. Lin & Dyer.

Home Prev Next 26

Performance
Tests run on cluster of 1800 machines:

◾ 4 GB of memory
◾ Dual-processor 2 GHz Xeons with Hyperthreading
◾ Dual 160 GB IDE disks
◾ Gigabit Ethernet per machine
◾ Bisection bandwidth approximately 100 Gbps

Two benchmarks:
MR_Grep Scan 1010 100-byte records to extract records matching a rare

pattern (92K matching records)
MR_Sort Sort 1010 100-byte records (modeled after TeraSort benchmark)

Página 1 de 1Performance

Home Prev Next 27

MR_Grep

Locality optimization helps:

◾ 1800 machines read 1 TB of data at peak of ~31 GB/s
◾ Without this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs

Página 1 de 1MR_Grep

Home Prev Next 28

MR_Sort

◾ Backup tasks reduce job completion time significantly
◾ System deals well with failures

Normal No backup tasks 200 processes killed

Página 1 de 1MR_Sort

Home Prev Next 29

Experience: Rewrite of Production Indexing System
Rewrote Google's production indexing system using MapReduce

◾ Set of 10, 14, 17, 21, 24 MapReduce operations
◾ New code is simpler, easier to understand
◾ MapReduce takes care of failures, slow machines
◾ Easy to make indexing faster by adding more machines

Página 1 de 1Experience: Rewrite of Production Indexing System

Home Prev Next 30

Usage: MapReduce jobs run in August 2004
Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days

Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB

Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55

Unique map implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426

Página 1 de 1Usage: MapReduce jobs run in August 2004

Home Prev Next 32

Conclusions

◾ MapReduce has proven to be a useful abstraction
◾ Greatly simplifies large-scale computations at Google
◾ Fun to use: focus on problem, let library deal w/ messy details

Thanks to Josh Levenberg, who has made many significant improvements and to
everyone else at Google who has used and helped to improve MapReduce.

Página 1 de 1Conclusions

